
www.ourcreativeinfo.in

UNIT-III

Architectural Design: Architectural Views, Architectural Patterns – MVC, Layered,

Repository, Client Server, Pipe and Filter System Modeling: Interaction Modeling: Use

case diagrams, Sequence diagrams; Structural modeling: Class diagrams; Behavioral

Modeling : State diagrams; Functional modeling : Data flow diagrams-10hrs

Architectural Design

Architectural design is a process for identifying the sub-systems making up a system and the

framework for sub-system control and communication. The output of this design process is a

description of the software architecture. Architectural design is an early stage of the system

design process. It represents the link between specification and design processes and is often

carried out in parallel with some specification activities. It involves identifying major system

components and their communications.

Software architectures can be designed at two levels of abstraction:

• Architecture in the small is concerned with the architecture of individual programs.

At this level, we are concerned with the way that an individual program is

decomposed into components.

• Architecture in the large is concerned with the architecture of complex enterprise

systems that include other systems, programs, and program components. These

enterprise systems are distributed over different computers, which may be owned and

managed by different companies.

Three advantages of explicitly designing and documenting software architecture:

• Stakeholder communication: Architecture may be used as a focus of discussion by
system stakeholders.

• System analysis: Well-documented architecture enables the analysis of whether the

system can meet its non-functional requirements.

• Large-scale reuse: The architecture may be reusable across a range of systems or

entire lines of products.

Software architecture is most often represented using simple, informal block diagrams showing

entities and relationships. Pros: simple, useful for communication with stakeholders, great for

project planning. Cons: lack of semantics, types of relationships between entities, visible

properties of entities in the architecture.

Uses of architectural models:

As a way of facilitating discussion about the system design

A high-level architectural view of a system is useful for communication with system

stakeholders and project planning because it is not cluttered with detail. Stakeholders can

relate to it and understand an abstract view of the system. They can then discuss the

www.ourcreativeinfo.in

system as a whole without being confused by detail.

As a way of documenting an architecture that has been designed

The aim here is to produce a complete system model that shows the different components
in a system, their interfaces and their connections.

Architectural design decisions

Architectural design is a creative process so the process differs depending on the type of system

being developed. However, a number of common decisions span all design processes and these

decisions affect the non-functional characteristics of the system:

• Is there a generic application architecture that can be used?

• How will the system be distributed?

• What architectural styles are appropriate?

• What approach will be used to structure the system?

• How will the system be decomposed into modules?

• What control strategy should be used?

• How will the architectural design be evaluated?

• How should the architecture be documented?

Systems in the same domain often have similar architectures that reflect domain concepts.

Application product lines are built around a core architecture with variants that satisfy particular

customer requirements. The architecture of a system may be designed around one of

more architectural patterns/styles, which capture the essence of an architecture and can be

instantiated in different ways.

The particular architectural style should depend on the non-functional system requirements:

• Performance: localize critical operations and minimize communications. Use large

rather than fine-grain components.

• Security: use a layered architecture with critical assets in the inner layers.

• Safety: localize safety-critical features in a small number of sub-systems.

• Availability: include redundant components and mechanisms for fault tolerance.

• Maintainability: use fine-grain, replaceable components.

Architectural views

Each architectural model only shows one view or perspective of the system. It might show how a

system is decomposed into modules, how the run-time processes interact or the different ways in

which system components are distributed across a network. For both design and documentation,

you usually need to present multiple views of the software architecture.

4+1 view model of software architecture:

• A logical view, which shows the key abstractions in the system as objects or object

classes.

• A process view, which shows how, at run-time, the system is composed of

interacting processes.

www.ourcreativeinfo.in

• A development view, which shows how the software is decomposed for

development.

• A physical view, which shows the system hardware and how software components

are distributed across the processors in the system.

• Related using use cases or scenarios (+1).

Architectural patterns

Patterns are a means of representing, sharing and reusing knowledge. An architectural pattern is

a stylized description of a good design practice, which has been tried and tested in different

environments. Patterns should include information about when they are and when the are not

useful. Patterns may be represented using tabular and graphical descriptions.

Model-View-Controller

• Serves as a basis of interaction management in many web-based systems.

• Decouples three major interconnected components:

o The model is the central component of the pattern that directly manages the
data, logic and rules of the application. It is the application's dynamic data

structure, independent of the user interface.
o A view can be any output representation of information, such as a chart or a

diagram. Multiple views of the same information are possible.

o The controller accepts input and converts it to commands for the model or
view.

• Supported by most language frameworks.

www.ourcreativeinfo.in

Pattern name Model-View-Controller (MVC)

Description

Separates presentation and interaction from the system data. The system is

structured into three logical components that interact with each other. The Model

component manages the system data and associated operations on that data. The

View component defines and manages how the data is presented to the user. The

Controller component manages user interaction (e.g., key presses, mouse clicks,

etc.) and passes these interactions to the View and the Model.

Problem

description

The display presented to the user frequently changes over time in response to

input or computation. Different users have different needs for how they want to

view the program.s information. The system needs to reflect data changes to all

users in the way that they want to view them, while making it easy to make

changes to the user interface.

Solution

description

This involves separating the data being manipulated from the manipulation logic

and the details of display using three components: Model (a problem-domain

component with data and operations, independent of the user interface), View (a

data display component), and Controller (a component that receives and acts on

user input).

Consequences

Advantages: views and controllers can be easily be added, removed, or changed;

views can be added or changed during execution; user interface components can

be changed, even at runtime. Disadvantages: views and controller are often hard

to separate; frequent updates may slow data display and degrade user interface

performance; the MVC style makes user interface components (views,

controllers) highly dependent on model components.

 Layered architecture

• Used to model the interfacing of sub-systems.

• Organizes the system into a set of layers (or abstract machines) each of which provide

a set of services.

• Supports the incremental development of sub-systems in different layers. When a
layer interface changes, only the adjacent layer is affected.

• However, often artificial to structure systems in this way.

www.ourcreativeinfo.in

Name Layered architecture

Description

Organizes the system into layers with related functionality associated with each

layer. A layer provides services to the layer above it so the lowest-level layers

represent core services that are likely to be used throughout the system.

When used

Used when building new facilities on top of existing systems; when the

development is spread across several teams with each team responsibility for a

layer of functionality; when there is a requirement for multi-level security.

Advantages

Allows replacement of entire layers so long as the interface is maintained.

Redundant facilities (e.g., authentication) can be provided in each layer to

increase the dependability of the system.

Disadvantages

In practice, providing a clean separation between layers is often difficult and a

high-level layer may have to interact directly with lower-level layers rather than

through the layer immediately below it. Performance can be a problem because of

multiple levels of interpretation of a service request as it is processed at each

layer.

 Repository architecture

• Sub-systems must exchange data. This may be done in two ways:

o Shared data is held in a central database or repository and may be accessed by

www.ourcreativeinfo.in

all sub-systems;

o Each sub-system maintains its own database and passes data explicitly to
other sub-systems.

• When large amounts of data are to be shared, the repository model of sharing is most

commonly used a this is an efficient data sharing mechanism.

Name Repository

Description

All data in a system is managed in a central repository that is accessible to all

system components. Components do not interact directly, only through the

repository.

When used

You should use this pattern when you have a system in which large volumes of

information are generated that has to be stored for a long time. You may also use

it in data-driven systems where the inclusion of data in the repository triggers an

action or tool.

Advantages

Components can be independent--they do not need to know of the existence of

other components. Changes made by one component can be propagated to all

components. All data can be managed consistently (e.g., backups done at the

same time) as it is all in one place.

Disadvantages

The repository is a single point of failure so problems in the repository affect the

whole system. May be inefficiencies in organizing all communication through the

repository. Distributing the repository across several computers may be difficult.

www.ourcreativeinfo.in

 Client-server architecture

• Distributed system model which shows how data and processing is distributed across

a range of components, but can also be implemented on a single computer.

• Set of stand-alone servers which provide specific services such as printing, data
management, etc.

• Set of clients which call on these services.

• Network which allows clients to access servers.

Name Client-server

Description

In a client-server architecture, the functionality of the system is organized into

services, with each service delivered from a separate server. Clients are users of

these services and access servers to make use of them.

When used

Used when data in a shared database has to be accessed from a range of locations.

Because servers can be replicated, may also be used when the load on a system is

variable.

Advantages The principal advantage of this model is that servers can be distributed across a

network. General functionality (e.g., a printing service) can be available to all

www.ourcreativeinfo.in

 clients and does not need to be implemented by all services.

Disadvantages

Each service is a single point of failure so susceptible to denial of service attacks

or server failure. Performance may be unpredictable because it depends on the

network as well as the system. May be management problems if servers are

owned by different organizations.

 Pipe and filter architecture

• Functional transformations process their inputs to produce outputs.

• May be referred to as a pipe and filter model (as in UNIX shell).

• Variants of this approach are very common. When transformations are sequential,

this is a batch sequential model which is extensively used in data processing systems.

• Not really suitable for interactive systems.

Name Pipe and filter

Description

The processing of the data in a system is organized so that each processing

component (filter) is discrete and carries out one type of data transformation. The

data flows (as in a pipe) from one component to another for processing.

When used
Commonly used in data processing applications (both batch- and transaction-

based) where inputs are processed in separate stages to generate related outputs.

Advantages

Easy to understand and supports transformation reuse. Workflow style matches

the structure of many business processes. Evolution by adding transformations is

straightforward. Can be implemented as either a sequential or concurrent system.

Disadvantages
The format for data transfer has to be agreed upon between communicating

transformations. Each transformation must parse its input and unparse its output

to the agreed form. This increases system overhead and may mean that it is

www.ourcreativeinfo.in

 impossible to reuse functional transformations that use incompatible data

structures.

Application architectures

Application systems are designed to meet an organizational need. As businesses have much in

common, their application systems also tend to have a common architecture that reflects the

application requirements. A generic application architecture is an architecture for a type of

software system that may be configured and adapted to create a system that meets specific

requirements. application architectures can be used as a:

• Starting point for architectural design.

• Design checklist.

• Way of organizing the work of the development team.

• Means of assessing components for reuse.

• Vocabulary for talking about application types.

Examples of application types:

Data processing applications

Data driven applications that process data in batches without explicit user intervention

during the processing.

Transaction processing applications

Data-centred applications that process user requests and update information in a system

database.

Event processing systems

Applications where system actions depend on interpreting events from the system's
environment.

Language processing systems

Applications where the users' intentions are specified in a formal language that is

processed and interpreted by the system.

www.ourcreativeinfo.in

System modeling is the process of developing abstract models of a system, with each model

presenting a different view or perspective of that system. It is about representing a system using

some kind of graphical notation, which is now almost always based on notations in the Unified

Modeling Language (UML). Models help the analyst to understand the functionality of the

system; they are used to communicate with customers.

Models can explain the system from different perspectives:

• An external perspective, where you model the context or environment of the system.

• An interaction perspective, where you model the interactions between a system and

its environment, or between the components of a system.

• A structural perspective, where you model the organization of a system or the

structure of the data that is processed by the system.

• A behavioral perspective, where you model the dynamic behavior of the system and

how it responds to events.

Five types of UML diagrams that are the most useful for system modeling:

• Activity diagrams, which show the activities involved in a process or in data

processing.

• Use case diagrams, which show the interactions between a system and its

environment.

• Sequence diagrams, which show interactions between actors and the system and

between system components.

• Class diagrams, which show the object classes in the system and the associations

between these classes.

• State diagrams, which show how the system reacts to internal and external events.

Models of both new and existing system are used during requirements engineering. Models of

the existing systems help clarify what the existing system does and can be used as a basis for

discussing its strengths and weaknesses. These then lead to requirements for the new system.

Models of the new system are used during requirements engineering to help explain the

proposed requirements to other system stakeholders. Engineers use these models to discuss

design proposals and to document the system for implementation.

Context and process models

Context models are used to illustrate the operational context of a system - they show what lies

outside the system boundaries. Social and organizational concerns may affect the decision on

where to position system boundaries. Architectural models show the system and its relationship

with other systems.

System boundaries are established to define what is inside and what is outside the system. They

show other systems that are used or depend on the system being developed. The position of the

system boundary has a profound effect on the system requirements. Defining a system boundary

is a political judgment since there may be pressures to develop system boundaries that

increase/decrease the influence or workload of different parts of an organization.

www.ourcreativeinfo.in

Context models simply show the other systems in the environment, not how the system being

developed is used in that environment. Process models reveal how the system being developed

is used in broader business processes. UML activity diagrams may be used to define business

process models.

The example below shows a UML activity diagram describing the process of involuntary

detention and the role of MHC-PMS (mental healthcare patient management system) in it.

Interaction models

Types of interactions that can be represented in a model:

• Modeling user interaction is important as it helps to identify user requirements.

• Modeling system-to-system interaction highlights the communication problems that

may arise.

• Modeling component interaction helps us understand if a proposed system structure

is likely to deliver the required system performance and dependability.

Use cases were developed originally to support requirements elicitation and now incorporated

into the UML. Each use case represents a discrete task that involves external interaction with a

system. Actors in a use case may be people or other systems. Use cases can be represented using

a UML use case diagram and in a more detailed textual/tabular format.

Simple use case diagram:

www.ourcreativeinfo.in

Use case description in a tabular format:

Use case title Transfer data

Description

A receptionist may transfer data from the MHC-PMS to a general patient record

database that is maintained by a health authority. The information transferred

may either be updated personal information (address, phone number, etc.) or a

summary of the patient's diagnosis and treatment.

Actor(s) Medical receptionist, patient records system (PRS)

Preconditions

Patient data has been collected (personal information, treatment summary);

The receptionist must have appropriate security permissions to access the

patient information and the PRS.

Postconditions PRS has been updated

Main success

scenario

1. Receptionist selects the "Transfer data" option from the menu.

2. PRS verifies the security credentials of the receptionist.

3. Data is transferred.

4. PRS has been updated.

Extensions

2a. The receptionist does not have the necessary security credentials.

2a.1. An error message is displayed.

2a.2. The receptionist backs out of the use case.

UML sequence diagrams are used to model the interactions between the actors and the objects

within a system. A sequence diagram shows the sequence of interactions that take place during a

particular use case or use case instance. The objects and actors involved are listed along the top

of the diagram, with a dotted line drawn vertically from these. Interactions between objects are

indicated by annotated arrows.

www.ourcreativeinfo.in

Structural models

Structural models of software display the organization of a system in terms of the components

that make up that system and their relationships. Structural models may be static models, which

show the structure of the system design, or dynamic models, which show the organization of the

system when it is executing. You create structural models of a system when you are discussing

and designing the system architecture.

UML class diagrams are used when developing an object-oriented system model to show the

classes in a system and the associations between these classes. An object class can be thought of

as a general definition of one kind of system object. An association is a link between classes that

indicates that there is some relationship between these classes. When you are developing models

during the early stages of the software engineering process, objects represent something in the

real world, such as a patient, a prescription, doctor, etc.

www.ourcreativeinfo.in

Generalization is an everyday technique that we use to manage complexity. In modeling

systems, it is often useful to examine the classes in a system to see if there is scope for

generalization. In object-oriented languages, such as Java, generalization is implemented using

the class inheritance mechanisms built into the language. In a generalization, the attributes and

operations associated with higher-level classes are also associated with the lower-level classes.

The lower-level classes are subclasses inherit the attributes and operations from their

superclasses. These lower-level classes then add more specific attributes and operations.

www.ourcreativeinfo.in

An aggregation model shows how classes that are collections are composed of other classes.

Aggregation models are similar to the part-of relationship in semantic data models.

Behavioral models

Behavioral models are models of the dynamic behavior of a system as it is executing. They

show what happens or what is supposed to happen when a system responds to a stimulus from its

environment. Two types of stimuli:

• Some data arrives that has to be processed by the system.

• Some event happens that triggers system processing. Events may have associated

data, although this is not always the case.

Many business systems are data-processing systems that are primarily driven by data. They are

controlled by the data input to the system, with relatively little external event processing. Data-

driven models show the sequence of actions involved in processing input data and generating an

associated output. They are particularly useful during the analysis of requirements as they can be

used to show end-to-end processing in a system. Data-driven models can be created using

UML activity diagrams:

Data-driven models can also be created using UML sequence diagrams:

www.ourcreativeinfo.in

Real-time systems are often event-driven, with minimal data processing. For example, a landline

phone switching system responds to events such as 'receiver off hook' by generating a dial

tone. Event-driven models shows how a system responds to external and internal events. It is

based on the assumption that a system has a finite number of states and that events (stimuli) may

cause a transition from one state to another. Event-driven models can be created using

UML state diagrams:

www.ourcreativeinfo.in

www.ourcreativeinfo.in

Functional Modeling I

Functional Modelling provides the outline that what the system is supposed to do.It does not

describes what is the need of evaluation of data, when they are evaluated and how they are

evaluated apart from all it only represent origin of data values.It describes the function of internal

processes with the help of DFD (Data Flow Diagram) (Links to an external site.)Links to an

external site..

Data Flow Diagrams: Function modelling is represented with the help of DFDs. DFD is the

graphically representation of data.It shows the input, output and processing of the system .When

we are trying to create our own business, website, system, project then there is need to find out

how information passes from one process to another so all are done by DFD. There are number

of levels in DFD but upto third level DFD is sufficient for understanding of any system.

The basic components of the DFD are:

1. External Entity :

External entity is the entity that takes information and gives information to the system. It is

represented with rectangle.

2. Data Flow :

The data passes from one place to another is shown by data flow. Data flow is represented
with arrow and some information written over it.

3. Process :

It is also called function symbol.It is used to process all the information.If there are

calculations so all are done in the process part.It is represented with circle and name of the

process and level of DFD written inside it.

4. Data Store :

It is used to store the information and retrieve the stored information.It is represented with

double parallel lines.

Some Guidelines for creating a DFD:

1. Every process must have meaningful name and number.

2. Level 0 DFD must have only one process.

3. Every data flow and arrow has given the name.

4. DFD should be logical consistent.

5. DFD should be organised in such a way that it is easy to understand.

6. There should be no loop in the DFD.

7. Each DFD should not have more than 6 processes.

8. The process can only connected with process, external entity and data store.

9. External entity cannot be directly connected with external entity.

10. The direction of DFD is left to right and top to bottom representation.

In Software engineering DFD(data flow diagram) can be drawn to represent the system of

different levels of abstraction. Higher-level DFDs are partitioned into low levels-hacking more

https://www.geeksforgeeks.org/levels-in-data-flow-diagrams-dfd/
https://www.geeksforgeeks.org/levels-in-data-flow-diagrams-dfd/

www.ourcreativeinfo.in

information and functional elements. Levels in DFD are numbered 0, 1, 2 or beyond. Here, we

will see mainly 3 levels in the data flow diagram, which are: 0-level DFD, 1-level DFD, and 2-

level DFD.

Data Flow Diagrams (DFD) are graphical representations of a system that illustrate the flow of

data within the system. DFDs can be divided into different levels, which provide varying

degrees of detail about the system. The following are the four levels of DFDs:

1. Level 0 DFD: This is the highest-level DFD, which provides an overview of the entire

system. It shows the major processes, data flows, and data stores in the system, without

providing any details about the internal workings of these processes.

2. Level 1 DFD: This level provides a more detailed view of the system by breaking down

the major processes identified in the level 0 DFD into sub-processes. Each sub-process is

depicted as a separate process on the level 1 DFD. The data flows and data stores

associated with each sub-process are also shown.

3. Level 2 DFD: This level provides an even more detailed view of the system by breaking

down the sub-processes identified in the level 1 DFD into further sub-processes. Each sub-

process is depicted as a separate process on the level 2 DFD. The data flows and data stores

associated with each sub-process are also shown.

4. Level 3 DFD: This is the most detailed level of DFDs, which provides a detailed view of

the processes, data flows, and data stores in the system. This level is typically used for

complex systems, where a high level of detail is required to understand the system. Each

process on the level 3 DFD is depicted with a detailed description of its input, processing,

and output. The data flows and data stores associated with each process are also shown.

The choice of DFD level depends on the complexity of the system and the level of detail

required to understand the system. Higher levels of DFD provide a broad overview of the

system, while lower levels provide more detail about the system’s processes, data flows, and

data stores. A combination of different levels of DFD can provide a complete understanding of

the system.

• 0-level DFD: It is also known as a context diagram. It’s designed to be an abstraction view,

showing the system as a single process with its relationship to external entities. It

represents the entire system as a single bubble with input and output data indicated by

incoming/outgoing arrows.

• 1-level DFD: In 1-level DFD, the context diagram is decomposed into multiple

bubbles/processes. In this level, we highlight the main functions of the system and

breakdown the high-level process of 0-level DFD into subprocesses.

www.ourcreativeinfo.in

• 2-level DFD: 2-level DFD goes one step deeper into parts of 1-level DFD. It can be used to

plan or record the specific/necessary detail about the system’s functioning.

Advantages of using Data Flow Diagrams (DFD) include:

1. Easy to understand: DFDs are graphical representations that are easy to understand and

communicate, making them useful for non-technical stakeholders and team members.

www.ourcreativeinfo.in

2. Improves system analysis: DFDs are useful for analyzing a system’s processes and data

flow, which can help identify inefficiencies, redundancies, and other problems that may

exist in the system.

3. Supports system design: DFDs can be used to design a system’s architecture and structure,
which can help ensure that the system is designed to meet the requirements of the

stakeholders.

4. Enables testing and verification: DFDs can be used to identify the inputs and outputs of a

system, which can help in the testing and verification of the system’s functionality.

5. Facilitates documentation: DFDs provide a visual representation of a system, making it

easier to document and maintain the system over time.

Disadvantages of using DFDs include:

1. Can be time-consuming: Creating DFDs can be a time-consuming process, especially for

complex systems.

2. Limited focus: DFDs focus primarily on the flow of data in a system, and may not capture

other important aspects of the system, such as user interface design, system security, or

system performance.

3. Can be difficult to keep up-to-date: DFDs may become out-of-date over time as the system
evolves and changes.

4. Requires technical expertise: While DFDs are easy to understand, creating them requires a

certain level of technical expertise and familiarity with the system being analyzed.

5. Overall, the benefits of using DFDs outweigh the disadvantages. However, it is important

to recognize the limitations of DFDs and use them in conjunction with other tools and

techniques to analyze and design complex software systems.

Questions and Answers

1. What is architectural design, and why is it important?

• Answer: Architectural design is the process of defining the structure and organization of a

software system. It is important because it sets the foundation for the entire development process,
influencing aspects like system performance, scalability, maintainability, and reliability.

2. What are the key goals of architectural design?

• Answer: The key goals include scalability, maintainability, reliability, and performance.

Architectural design aims to create a structure that meets functional requirements while
addressing non-functional qualities like efficiency and ease of maintenance.

3. Explain the difference between architectural patterns and design patterns.

www.ourcreativeinfo.in

• Answer: Architectural patterns provide high-level solutions for organizing and structuring

software systems, addressing global concerns. Design patterns, on the other hand, offer solutions
to specific recurring design problems within a given context, focusing on lower-level design
issues.

4. What is the Model-View-Controller (MVC) pattern, and how does it benefit software

design?

• Answer: MVC separates an application into three components – Model, View, and Controller. It

promotes modularity, maintainability, and reusability by isolating data, user interface, and
application logic. Changes in one component have minimal impact on the others.

5. How does the layered architecture contribute to the design of a software system?

• Answer: Layered architecture organizes the system into distinct layers, promoting separation of

concerns. Each layer has specific responsibilities, such as presentation, business logic, and data

access. This structure enhances modularity, maintainability, and allows for easier updates or
replacements of individual layers.

6. Explain the benefits of using the Repository pattern in architectural design.

• Answer: The Repository pattern abstracts the data access logic, providing a clean separation

between data-related operations and the rest of the application. This enhances maintainability,

testability, and allows for easier changes to the data storage mechanism without affecting the
application's business logic.

7. What role does the Controller play in the Model-View-Controller (MVC) pattern?

• Answer: The Controller handles user input, translates it into actions on the model or view, and

acts as an intermediary between them. It updates the model based on user input and updates the
view accordingly.

8. How does the Pipe and Filter architectural pattern enhance modularity in software

design?

• Answer: Pipe and Filter structure the system into a series of processing steps (filters) connected

by data channels (pipes). This promotes modularity and reusability, as each filter is an

independent, self-contained component, and filters can be added, modified, or removed without
affecting the entire system.

9. Explain the concept of separation of concerns in software architecture.

• Answer: Separation of concerns is the practice of dividing a software system into distinct,

independent components, each addressing a specific aspect of functionality. This promotes

www.ourcreativeinfo.in

These questions and answers cover a range of topics related to architectural design in software

engineering. Depending on the context, the depth of discussion, and the specific requirements of

a role or project, questions may vary.

10. How does architectural design contribute to the quality attributes of a software system?

• Answer: Architectural design directly influences quality attributes such as performance,

reliability, scalability, and maintainability. Decisions made during architectural design impact

how the system will perform, handle errors, scale to meet demand, and adapt to changes over
time.

11. What is the significance of documenting architectural decisions?

• Answer: Documenting architectural decisions is crucial for communication, knowledge sharing,

and future reference. It helps in conveying the rationale behind design choices, facilitating

collaboration among team members, and providing a basis for future modifications or
enhancements.

12. Can you explain the concept of architectural views, and why are they important?

• Answer: Architectural views provide different perspectives on the system, addressing the

concerns of various stakeholders. They help in understanding specific aspects such as

functionality, structure, behavior, and deployment. Architectural views are important for

communicating complex designs to different stakeholders and ensuring a comprehensive
understanding of the system.

modularity, maintainability, and ease of development by isolating different concerns and

minimizing the impact of changes in one area on others.

