
www.ourcreativeinfo.in

Unit 1

Introduction to OperatingSystem

Introduction

An Operating System (OS) is an interface

between computer user and computer hardware. An

operating system is software which performs all the

basic tasks like file management, memory management,

process management, handling input and output, and

controlling peripheral devices such as disk drives and

printers.

Some popular Operating Systems include Linux

Operating System, Windows Operating System, VMS,

OS/400, AIX, z/OS, etc.

Operating System Definition

A program that acts as an intermediary between a

user of a computer and the computer hardware.

• OS is a resource allocator

• Manages all resources

• Decides between conflicting requests for

efficient and fair resource use

• OS is a control program

• Controls execution of programs to prevent errors

and improper use of the computer

Following are some of important functions of an

operating System.

• Memory Management

• Processor Management

• Device Management

• File Management

• Security

• Control over system performance

• Job accounting

• Error detecting aids

• Coordination between other software and users

Types of Operating System

1. Batchoperating system

The users of a batch operating system do not

interact with the computer directly. Each user prepares

his job on an off-line device like punch cards and

submits it to the computer operator. To speed up

processing, jobs with similar needs are batched together

and run as a group. The programmers leave their

programs with the operator and the operator then sorts

the programs with similar requirements into batches.

The problems with Batch Systems are as follows −

• Lack of interaction between the user and the job.

• CPU is often idle, because the speed of the

mechanical I/O devices is slower than the CPU.

• Difficult to provide the desired priority.

2. Time-sharing operatingsystems

Time-sharing is a technique which enables

many people, located at various terminals, to use a

particular computer system at the same time. Time-

sharing or multitasking is a logical extension of

multiprogramming. Processor's time which is shared

among multiple users simultaneously is termed as time-

sharing.

The main difference between Multi-

programmed Batch Systems and Time-Sharing Systems

is that in case of Multi-programmed batch systems, the

objective is to maximize processor use, whereas in

Time-Sharing Systems, the objective is to minimize

response time.

Advantages of Timesharing operating systems

• Provides the advantage of quick response.

• Avoids duplication of software.

• Reduces CPU idle time.

Disadvantages of Time-sharing operating systems
• Problem of reliability.

• Question of security and integrity of user

programs and data.

• Problem of data communication.

www.ourcreativeinfo.in

3. Distributed operatingSystem

Distributed systems use multiple central

processors to serve multiple real-time applications and

multiple users. Data processing jobs are distributed

among the processors accordingly.

The advantages of distributed systems

• With resource sharing facility, a user at one site

may be able to use the resources available at

another.

• Speedup the exchange of data with one another

via electronic mail.

• If one site fails in a distributed system, the

remaining sites can potentially continue

operating.

• Better service to the customers.
• Reduction of the load on the host computer.

• Reduction of delays in data processing.

4. Network operatingSystem

A Network Operating System runs on a server

and provides the server the capability to manage data,

users, groups, security, applications, and other

networking functions.

The primary purpose of the network operating

system is to allow shared file and printer access among

multiple computers in a network, typically a local area

network (LAN), a private network or to other networks.

The advantages of network operating systems

• Centralized servers are highly stable.
• Security is server managed.

• Upgrades to new technologies and hardware can

be easily integrated into the system.

• Remote access to servers is possible from

different locations and types of systems.

The disadvantages of network operating systems
• High cost of buying and running a server.

• Dependency on a central location for most

operations.

• Regular maintenance and updates are required.

5. RealTimeoperatingSystem

A real-time system is defined as a data

processing system in which the time interval required to

process and respond to inputs is so small that it controls

the environment.

The time taken by the system to respond to an

input and display of required updated information is

termed as the response time. So in this method, the

response time is very less as compared to online

processing.

A real-time operating system must have well-

defined, fixed time constraints, otherwise the system

will fail.

There are two types of real-time operating systems.

• Hard real-time systems

Hard real-time systems guarantee that critical tasks

complete on time. In hard real-time systems, secondary

storage is limited or missing and the data is stored in

ROM. In these systems, virtual memory is almost never

found.

• Soft real-time systems

Soft real-time systems are less restrictive. A critical

real-time task gets priority over other tasks and retains

the priority until it completes. Soft real-time systems

have limited utility than hard real-time systems. For

example, multimedia, virtual reality, Advanced

Scientific Projects like undersea exploration and

planetary rovers, etc.

www.ourcreativeinfo.in

Operating-System Services

OS provide environments in which programs run,

and services for the users of the system, including:

• User Interfaces –

Means by which users can issue

commands to the system. Depending on the

system these may be a command-line interface (

e.g. sh, csh, ksh, tcsh, etc.), a GUI interface (

e.g. Windows, X-Windows, KDE, Gnome, etc.

), or a batch command systems.

• Program Execution –

The OS must be able to load a program

into RAM, run the program, and terminate the

program, either normally or abnormally.

• I/O Operations –

The OS is responsible for transferring

data to and from I/O devices, including

keyboards, terminals, printers, and storage

devices

.

• File-System Manipulation –

In addition to raw data storage, the OS

is also responsible for maintaining directory and

subdirectory structures, mapping file names to

specific blocks of data storage, and providing

tools for navigating and utilizing the file

system.

• Communications –

Inter-process communications, IPC,

either between processes running on the same

processor, or between processes running on

separate processors or separate machines. May

be implemented as either shared memory or

message passing, (or some systems may offer

both.)

• Error Detection –

Both hardware and software errors

must be detected and handled appropriately,

with a minimum of harmful repercussions.

Some systems may include complex error

avoidance or recovery systems, including

backups, RAID drives, and other redundant

systems. Debugging and diagnostic tools aid

users and administrators in tracing down the

cause of problems.

Other systems aid in the efficient operation of the

OS itself:

o Resource Allocation –

E.g. CPU cycles, main memory, storage

space, and peripheral devices. Some resources

are managed with generic systems and others

with very carefully designed and specially tuned

systems, customized for a particular resource

and operating environment.

o Accounting –

Keeping track of system activity and

resource usage, either for billing purposes or for

statistical record keeping that can be used to

optimize future performance.

o Protection and Security –

Preventing harm to the system and to

resources, either through wayward internal

processes or malicious outsiders.

Authentication, ownership, and restricted access

are obvious parts of this system. Highly secure

systems may log all process activity down to

excruciating detail, and security regulation

dictate the storage of those records on

permanent non-erasable medium for extended

times in secure (off-site) facilities.

System Calls

• System calls provide a means for user or

application programs to call upon the services of

the operating system.

• The interface between a process and an

operating system is provided by system calls. In

general, system calls are available as assembly

language instructions.

• System calls are usually made when a process in

user mode requires access to a resource. Then it

requests the kernel to provide the resource via a

system call.

• Generally written in C or C++, although some

are written in assembly for optimal performance.

www.ourcreativeinfo.in

• Figure illustrates the sequence of system calls

required to copy a file:

• Most programmers do not use the low-level

system calls directly, but instead use an

"Application Programming Interface", API.

• The use of APIs instead of direct system calls

provides for greater program portability between

different systems. The API then makes the

appropriate system calls through the system call

interface

In general, system calls are required in the following

situations:

• If a file system requires the creation or deletion

of files. Reading and writing from files also

require a system call.

• Creation and management of new processes.

• Network connections also require system calls.

This includes sending and receiving packets.

• Access to a hardware devices such as a printer,

scanner etc. requires a system call.

Types of System Calls

There are mainly five types of system calls.

These are explained in detail as follows:

1. Process Control

These system calls deal with processes such as

process

o end, abort

o load, execute

o create process, terminate process

o wait for time

o allocate and free memory

2. File Management

These system calls are responsible for file

manipulation such as

o create file, delete file

o open, close
o read, write, reposition

3. Device Management

These system calls are responsible for device

manipulation such as

o read, write, reposition

o request device, release device

o logically attach or detach device
4. Information Maintenance

These system calls handle information and its

transfer between the operating system and the user

program.

o Get time and date, set time and date

o Get process, file, or device attribute

o Set process, file, or device attribute
5. Communication

These system calls are useful for inter-process

communication. They also deal with creating and

deleting a communication connection.

o Create, delete communication connection

o Send, receive message

o Attach or detach remote devices

Operating System Structure

1. Simple Structure

• MS-DOS – written to provide the most

functionality in the least space

• Not divided into modules

• Although MS-DOS has some structure, its

interfaces and levels of Functionality are not

well separated

MS-DOS Layer Structure

www.ourcreativeinfo.in

2. Layered Approach

• The operating system is divided into a number

of layers (levels), each built on top of lower

layers.

• The bottom layer (layer 0), is the hardware; the

highest (layer N) is the user interface.

• With modularity, layers are selected such that

each uses functions (operations) and services of

only lower-level layers

3. Microkernel System Structure

• Moves as much from the kernel into ―user‖

space

• Communication takes place between user

modules using message passing

Benefits:

• Easier to extend a microkernel

• Easier to port the operating system to new

architectures

• More reliable (less code is running in kernel

mode)

• Overall, similar to layers but with more flexible

Virtual Machines

• Virtual machines first appeared as the VM

Operating System for IBM mainframes in 1972.

• The concept of a virtual machine is to provide an

interface that looks like independent hardware, to

multiple different OSes running simultaneously on

the same physical hardware.

• Each OS believes that it has access to and control

over its own CPU, RAM, I/O devices, hard drives,

etc.

• One obvious use for this system is for the

development and testing of software that must run

on multiple platforms and/or OSes.

• One obvious difficulty involves the sharing of

hard drives, which are generally partitioned into

separate smaller virtual disks for each operating

OS.

• More secure

Detriments:

• Performance overhead of user space to kernel

space communication

Mac OS X Structure

4. Modules

• Most modern operating systems implement

kernel modules

• Uses object-oriented approach

• Each core component is separate

• Each talks to the others over known interfaces

• Each is loadable as needed within the kernel

Figure 16.1 - System models. (a) Nonvirtual machine.

(b)Virtual machine.

Benefits

• Each OS runs independently of all the others,

offering protection and security benefits.

• (Sharing of physical resources is not commonly

implemented, but may be done as if the virtual

machines were networked together.)

• Virtual machines are a very useful tool for OS
development, as they allow a user full access to

Solaris Modular Approach

www.ourcreativeinfo.in

and control over a virtual machine, without

affecting other users operating the real machine.

• As mentioned before, this approach can also be

useful for product development and testing of SW

that must run on multiple OSes / HW platforms.

Simulation

• An alternative to creating an entire virtual machine

is to simply run an emulator, which allows a

program written for one OS to run on a different

OS.

• For example, a UNIX machine may run a DOS

emulator in order to run DOS programs, or vice-

versa.

• Emulators tend to run considerably slower than the

native OS, and are also generally less than perfect.

Para-virtualization

• Para-virtualization is another variation on the

theme, in which an environment is provided for

the guest program that is similar to its native OS,

without trying to completely mimic it.

• Guest programs must also be modified to run on

the para-virtual OS.

• Solaris 10 uses a zone system, in which the low-

level hardware is not virtualized, but the OS and

its devices (device drivers) are.

• Within a zone, processes have the view of an

isolated system, in which only the processes and

resources within that zone are seen to exist.

• Figure 2.18 shows a Solaris system with the

normal "global" operating space as well as two

additional zones running on a small virtualization

layer.

Implementation

• Implementation may be challenging, partially due

to the consequences of user versus kernel mode.

• Each of the simultaneously running kernels needs

to operate in kernel mode at some point, but the

virtual machine actually runs in user mode.

• So the kernel mode has to be simulated for each of

the loaded OSes, and kernel system calls passed

through the virtual machine into a true kernel

mode for eventual HW access.

• The virtual machines may run slower, due to the

increased levels of code between applications and

the HW, or they may run faster, due to the benefits

of caching. (And virtual devices may also be

faster than real devices, such as RAM disks which

are faster than physical disks.)

Example

The Java Virtual Machine

• Example of programming-environment

virtualization

• Very popular language / application environment

invented by Sun Microsystems in 1995

• Write once, run anywhere

• Includes language specification (Java), API

library, Java virtual machine (JVM)

• Java objects specified by class construct, Java

program is one or more objects

• Each Java object compiled into architecture-

neutral bytecode output (.class) which JVM class

loader loads

• JVM compiled per architecture, reads bytecode

and executes

• Includes garbage collection to reclaim memory no

longer in use

• Made faster by just-in-time (JIT) compiler that

turns bytecodes into native code and caches them

www.ourcreativeinfo.in

Unit II

Process Management

Process Definition:

o A process is basically a program in execution.

The execution of a process must progress in a

sequential fashion.

o A process is defined as an entity which

represents the basic unit of work to be implemented

in the system.

o Example : we write our computer programs in a

text file and when we execute this program, it

becomes a process which performs all the tasks

mentioned in the program.

o When a program is loaded into the memory and

it becomes a process, it can be divided into four

sections ─ stack, heap, text and data. The following

image shows a simplified layout of a process inside

main memory −

a. Stack: The process Stack contains the

temporary data such as method/function

parameters, return address and local variables.

b. Heap: This is dynamically allocated memory to

a process during its run time.

c. Text: This includes the current activity

represented by the value of Program Counter

and the contents of the processor's registers.

d. Data: This section contains the global and static

variables.

Process States:

o As a process executes, its changes state.

o The state of a process is defined in part by the

current activity of that process.

Each process may be in one of the following states:

➢ new: The process is being created

➢ running: Instructions are being executed

➢ waiting: The process is waiting for some event

to occur

➢ ready: The process is waiting to be assigned to

a processor

➢ terminated: The process has finished execution

Process state transitions / Life Cycle of a process

Process Control Block (PCB)

o Each process is represented in the operating system

by a process control block

o It is also called as task control block

o It contains many piece of information associated
with a specific process

o Below figure illustrate the process control block

➢ Process state: The state may be new, ready,

running, waiting, etc…

➢ Program Counter: The counter indicates the

address of the next instruction to be executed for

this process

➢ CPU Registers: Includes index registers, stack

pointers, and general purpose registers etc

➢ CPU-Scheduling information: Includes

priorities, scheduling queue pointers etc..

www.ourcreativeinfo.in

➢ Memory Management Information: Includes

information about memory allocated to the

process

➢ Accounting Information: CPU used, clock

time elapsed since start, time limits etc

➢ I/O Status Information: I/O devices allocated

to process, list of open files

Context Switching

A context switch occurs when a computer‘s

CPU switches from one process to a different process or

from one thread to a different thread.

o Context switching allows for one CPU

to handle numerous processes or

threads without the need for additional processors.

o A context switch is the mechanism to store and

restore the state or context of a CPU in Process

Control block so that a process execution can be

resumed from the same point at a later time.

o Any operating system that allows for multitasking

relies heavily on the use of context switching

to allow different processes to run at the same time.

o There are three situations that a context switch is
necessary, as shown below.

➢ Multitasking - When the CPU needs to switch

processes in and out of memory, so that more

than one process can be running.

➢ Kernel/User Switch - When switching between

user mode to kernel mode, it may be used (but

isn't always necessary).

➢ Interrupts - When the CPU is interrupted to

return data from a disk read.

 Threads

o Thread is a single sequence stream within a

process. Threads have same properties as of the

process so they are called as light weight processes.

o Threads are executed one after another but give the

illusion as if they are executing in parallel.

o Each thread has different states.

o Each thread has

1. A program counter

2. A register set

3. A stack space

Multithreads

o A thread is also known as lightweight process.

The idea is to achieve parallelism by dividing a

process into multiple threads.

o For example, in a browser, multiple tabs can be

different threads. MS Word uses multiple threads:

one thread to format the text, another thread to

process inputs, etc.

Multithread Models

www.ourcreativeinfo.in

o Similarity between Threads and Processes –

➢ Only one thread or process is active at a time

➢ Within process both execute sequential

➢ Both can create children

o Differences between Threads and Processes –

Advantages of Thread

o Responsiveness: If the process is divided into

multiple threads, if one thread completes its

execution, then its output can be immediately

returned.

o Faster context switch: Context switch time

between threads is lower compared to process

context switch. Process context switching requires

more overhead from the CPU.

o Effective utilization of multiprocessor system: If

we have multiple threads in a single process, then

we can schedule multiple threads on multiple

processor. This will make process execution faster.

o Resource sharing: Resources like code, data, and

files can be shared among all threads within a

process.

Note: stack and registers can‘t be shared among the

threads. Each thread has its own stack and registers.

o Communication: Communication between multiple

threads is easier, as the threads shares common

address space. while in process we have to follow

some specific communication technique for

communication between two process.

Types of Threads:

1. User Level thread (ULT) –

Is implemented in the user level library, they are

not created using the system calls. Thread switching

does not need to call OS and to cause interrupt to

Kernel. Kernel doesn‘t know about the user level

thread and manages them as if they were single-

threaded processes.

Advantages

➢ Can be implemented on an OS that does‘t

support multithreading.

➢ Simple representation since thread has only

program counter, register set, stack space.

➢ Simple to create since no intervention of kernel.

➢ Thread switching is fast since no OS calls need

to be made.

Disadvantages of ULT –

➢ No or less co-ordination among the threads and

Kernel.

➢ If one thread causes a page fault, the entire

process blocks.

Sl.

No

1

2

3

4

Process

Process is heavy
weight or resource
intensive.

Process switching

needs interaction with

operating system.

In multiple processes
each process operates
independently of the
others.

processes are

independent

Example:

Thread

Thread is light weight,
taking lesser resources
than a process.

Thread switching does not

need to interact with

operating system.

One thread can read, write

or change another thread's

data.

Threads are not

independent

5

www.ourcreativeinfo.in

2. Kernel Level Thread (KLT) –

Kernel knows and manages the threads. Instead of

thread table in each process, the kernel itself has

thread table (a master one) that keeps track of all the

threads in the system. In addition kernel also

maintains the traditional process table to keep track

of the processes. OS kernel provides system call to

create and manage threads.

Advantages

➢ Since kernel has full knowledge about the

threads in the system, scheduler may decide to

give more time to processes having large

number of threads.

➢ Good for applications that frequently block.

Disadvantages

➢ Slow and inefficient.

➢ It requires thread control block so it is an

overhead.

UNIT III

Process Synchronization

Inter process communication

Inter Process Communication (IPC) is a

mechanism that involves communication of one process

with another process. This usually occurs only in one

system.
Communication can be of two types −

• Between related processes initiating from only one

process, such as parent and child processes.

• Between unrelated processes, or two or more

different processes.

Following are some important terms that we need to

know before proceeding further on this topic.

• Pipes − Communication between two related

processes. The mechanism is half duplex meaning

the first process communicates with the second

process. To achieve a full duplex i.e., for the second

process to communicate with the first process

another pipe is required.

• FIFO − Communication between two unrelated

processes. FIFO is a full duplex, meaning the first

process can communicate with the second process

and vice versa at the same time.

• Message Queues − Communication between two or

more processes with full duplex capacity. The

processes will communicate with each other by

posting a message and retrieving it out of the queue.

• Shared Memory − Communication between two or

more processes is achieved through a shared piece of

memory among all processes

• Semaphores − Semaphores are meant for

synchronizing access to multiple processes. When

one process wants to access the memory (for reading

or writing), it needs to be locked (or protected) and

released when the access is removed. This needs to

be repeated by all the processes to secure data.

• Signals − Signal is a mechanism to communication

between multiple processes by way of signaling.
A process can be of two type:

• Independent process.

• Co-operating process.

Independent process

An independent process is not affected by the

execution of other processes while a co-operating

process can be affected by other executing processes.

Cooperating Processes:

• A Cooperating Process is one, that can effect or to be

affected by other processes executing in the system

• Cooperating Processes can either directly share a

logical address space or be allowed to share data

only through file or messages.

www.ourcreativeinfo.in

• Example

• If one process fails it will effect to all the processes.

Processes can communicate with each other using

these two ways:

1. Shared Memory

2. Message passing

In the shared-memory model, a region of

memory which is shared by cooperating processes gets

established. Processes can be then able to exchange

information by reading and writing all the data to the

shared region.

In the message-passing form, communication

takes place by way of messages exchanged among the

cooperating processes.

Process Synchronization

Problem arises in concurrent access to shared

data and it may lead to inconsistency.

Process Synchronization needs between

processes, whether, when and how to access the

particular shared resource and also for better utilization

of process.

Process Synchronization means sharing system

resources by processes in such a way that, Concurrent

access to shared data is handled thereby minimizing the

chance of inconsistent data. Maintaining data

consistency demands mechanisms to ensure

synchronized execution of cooperating processes.

Race Condition

A situation, where several processes access and

manipulate the same data concurrently and the outcome

of the execution depends on the particular order in which

the access takes place is called a race condition
Critical Section

• The critical section is a code segment where the

shared variables can be accessed.

• An atomic action is required in a critical section i.e.

only one process can execute in its critical section at

a time.

• All the other processes have to wait to execute in

their critical sections.

• A diagram that demonstrates the critical section is as

follows:

In the above diagram,

• The entry section handles the entry into the critical

section. It acquires the resources needed for

execution by the process.

• The exit section handles the exit from the critical

section. It releases the resources and also informs the

other processes that the critical section is free.

Solution to the Critical Section Problem

The critical section problem needs a solution to

synchronize the different processes.

The solution to the critical section problem must

satisfy the following conditions:

• Mutual Exclusion

Mutual exclusion implies that only one process

can be inside the critical section at any time. If any

other processes require the critical section, they must

wait until it is free.
• Progress

Progress means that if a process is not using the

critical section, then it should not stop any other

process from accessing it. In other words, any

process can enter a critical section if it is free.
• Bounded Waiting

Bounded waiting means that each process must

have a limited waiting time. It should not wait

endlessly to access the critical section.

www.ourcreativeinfo.in

flag[i] = FALSE;

Mutual Exclusion:

Requirements for Mutual Exclusion

• Only one process at a time is allowed in the critical

section for a resource

• A process that halts in its noncritical section must do

so without interfering with other processes

• A process must not be delayed access to a critical

section when there is no other process using it

• No assumptions are made about relative process

speeds or number of processors

• A process remains inside its critical section for a

finite time only

Mutual Exclusion Using Hardware Support

• Interrupt Disabling

o A process runs until it invokes an operating
system service or until it is interrupted

o Disabling interrupts guarantees mutual exclusion
• Disadvantages:

o Processor is limited in its ability to interleave
programs

o Will not work in multiprocessor architecture
• Compare&Swap Instruction

int compareAndSwap (int *word, int testval, int

newval)
{

int oldval;

oldval = *word;

if (oldval == testval) *word = newval;

return oldval;

}

• Exchange instruction

void exchange (int *register, int *memory)

{
int temp;

Algorithm for Process Pi
do

{

critical section

remainder section

} while (true)

Peterson‘s Solution preserves all three conditions:

• Mutual Exclusion is assured as only one process can

access the critical section at any time.

• Progress is also assured, as a process outside the

critical section does not block other processes from

entering the critical section.

• Bounded Waiting is preserved as every process gets

a fair chance.

Disadvantages of Peterson‘s Solution

• It involves Busy waiting

• It is limited to 2 processes.

Semaphores:

• Considered the simplest of synchronization tools.

• A semaphore S is an integer variable that, apart from

initialization, is accessed only through two standard

atomic operations: wait() and signal().

• The wait() operation was originally termed P (from

the Dutch proberen, ―to test‖);

• signal() was originally called V (from verhogen, ―to

increment‖). The definition of wait() is as follows:

temp = *memory;

*memory = *register;

*register = temp;

}

wait(S)

{

while (S <= 0) ; // busy wait

S--;

}

signal(S)

{

S++;

}

Peterson’s Solution

• Two process solution

• Assume that the LOAD and STORE instructions are

atomic; that is, cannot be interrupted.
• The two processes share two variables:

o int turn;

o Boolean flag[2]

• The variable turn indicates whose turn it is to enter

the critical section.

• The flag array is used to indicate if a process is ready

to enter the critical section. flag[i] = true implies that

process Pi is ready!

• All modifications to the integer value of the

semaphore in the wait() and signal() operations must

be executed indivisibly.

• That is, when one process modifies the semaphore

value, no other process can simultaneously modify

that same semaphore value.

• In addition, in the case of wait(S), the testing of the

integer value of S (S ≤ 0), as well as its possible

modification (S--), must be executed without

interruption.

• Operating systems often distinguish between

counting and binary semaphores.

flag[i] = TRUE;

turn = j;

while (flag[j] && turn == j);

www.ourcreativeinfo.in

• The value of a counting semaphore can range over an

unrestricted domain.

• The value of a binary semaphore can range only

between 0 and 1.

• Thus, binary semaphores behave similarly to mutex

locks. Binary semaphores can be used instead for

providing mutual exclusion.

• Counting semaphores can be used to control access

to a given resource consisting of a finite number of

instances. The semaphore is initialized to the number

of resources available.

• Each process that wishes to use a resource performs

a wait() operation on the semaphore (thereby

decrementing the count). When a process releases a

• If producer access the counter then producer will

increase the Counter value (Counter ++)

• If consumer access the counter then consumer will

decrease the Counter value (Counter --)

Solution using semaphore:

• Assume that the pool consists of n buffers, each

capable of holding one value/item.

• The ―mutex‖ semaphore provides mutual exclusion

for accesses to the buffer pool and is initialized to the

value 1.i,e: mutex = 1.

• The ―empty‖ and ―full‖ semaphores count the

number of empty and full buffers.

• The semaphore empty is initialized to the value n;

The semaphore full is initialized to the value 0.

resource, it performs a signal() operation

(incrementing the count).

Disadvantage

• Busy waiting time : When a process is in its critical

section, any other process that tries to enter its

critical section must loop continuously in the entry

code.
Classical Problems of Synchronization

Below is some of the classical problem of process

synchronization in systems where cooperating processes

Producer

do
{

Wait(empty);

Wait(mutex);

// Add item to buffer

Signal(mutex);

Signal(full);
}while(TRUE)

Consumer

do
{

Wait(full);

Wait(mutex);

// Consume item

Signal(mutex);

Signal(empty);
}while(TRUE)

are present.

1. Bounded Buffer (Producer-Consumer) Problem

2. Dining Philosophers Problem

3. The Readers Writers Problem

1. Bounded Buffer Problem

Bounded buffer problem, which is also

called producer consumer problem, is one of the

classic problems of synchronization.

Problem Statement

• There is a buffer of n slots and each slot is capable of

storing one unit of data.

• There are two processes running,

namely, producer and consumer, which are operating

on the buffer.

• A producer tries to insert data into an empty slot of

the buffer.

• A consumer tries to remove data from a filled slot in

the buffer.

• Assume that we have a shared resource counter

(Number of elements in the buffer at that time).

• Initially the counter value is 3

2. Dining Philosophers Problem

Problem Statement

Consider there are five philosophers sitting

around a circular dining table. The dining table has five

chopsticks and a bowl of rice in the middle as shown in

the below figure.

• At any instant, a philosopher is either eating or

thinking.

• When a philosopher wants to eat, he uses two

chopsticks - one from their left and one from their

right.

• When a philosopher wants to think, he keeps down

both chopsticks at their original place.

Solution using semaphore:

• A philosopher can think for an indefinite amount of

time. But when a philosopher starts eating, he has to

stop at some point of time.

• The philosopher is in an endless cycle of thinking

and eating.

www.ourcreativeinfo.in

• An array of five semaphores, stick[5], for each of the

five chopsticks.

• The code for each philosopher looks like:

do

{

• An integer variable read_count is used to maintain

the number of readers currently accessing the

resource.

• The variable read_count is initialized to 0.

wait(stick[i]);

wait(stick[(i+1) % 5]);

/* eat */

Writer Reader

do

{

//acquire lock

signal(stick[i]);

signal(stick[(i+1) % 5]);

/* think */

} while(TRUE)

Consider the situation when all five philosophers

are hungry simultaneously, and each of them pickup one

chopstick, then a deadlock situation occurs because they

will be waiting for another chopstick forever.

The possible solutions for this are:

• A philosopher must be allowed to pick up the

chopsticks only if both the left and right chopsticks

are available.

• Allow only four philosophers to sit at the table. That

way, if all the four philosophers pick up four

chopsticks, there will be one chopstick left on the

table. So, one philosopher can start eating and

do

{

wait(S);

/* perform the write

operation */

signal(S);

} while(TRUE)

Code explanation

wait(mutex);

read_count++;

if(read_count == 1)

wait(S);

//release lock

signal(mutex);

/* perform the reading

operation */

// acquire lock

wait(mutex);

read_count--;

if(read_count == 0)

signal(S);

// release lock

signal(mutex);

} while(TRUE)

eventually, two chopsticks will be available. In this

way, deadlocks can be avoided.

3. Readers Writer Problem

Problem Statement

• There is a shared resource which should be accessed

by multiple processes.

• There are two types of processes in this context.

They are reader and writer.

• Any number of readers can read from the shared

resource simultaneously, but only one writer can

write to the shared resource.

• When a writer is writing data to the resource, no

other process can access the resource.

• A writer cannot write to the resource if there are

nonzero numbers of readers accessing the resource at

that time.
Solution using semaphore:

• From the above problem statement, If a writer wants

to write to the resource, it must wait until there are

no readers currently accessing that resource.

• Here, we use one mutex = 1and a semaphore S=1.

• As seen above in the code for the writer, the writer
just waits on the w semaphore until it gets a chance

to write to the resource.

• After performing the write operation, it

increments w so that the next writer can access the

resource.

• On the other hand, in the code for the reader, the lock

is acquired whenever the read_count is updated by a

process.

• When a reader wants to access the resource, first it

increments the read_count value, then accesses the

resource and then decrements the read_count value.

• The semaphore w is used by the first reader which

enters the critical section and the last reader which

exits the critical section.

• The reason for this is, when the first readers enters

the critical section, the writer is blocked from the

resource. Only new readers can access the resource

now.

• Similarly, when the last reader exits the critical

section, it signals the writer using the w semaphore

because there are zero readers now and a writer can

have the chance to access the resource.

www.ourcreativeinfo.in

Monitor:

• It is characterized as a set of programmer defined

operators. Its representation consists of declaring of

variables, whose value defines the state of an

instance.

• The syntax of monitor is as follows.

Monitor monitor_name

{

Shared variable declarations

Procedure body P1 (………)

{

.

}

Procedure body P2 (………)

{

.
}

.

.

.

Procedure body Pn (………)

{

.

}

{

Initialization Code

}

}

Introduction to Deadlock

Every process needs some resources to complete

its execution. However, the resource is granted in a

sequential order.

1. The process requests for some resource.

2. OS grant the resource if it is available otherwise let

the process waits.

3. The process uses it and release on the completion.

Deadlock is a situation where a set of processes

are blocked because each process is holding a resource

and waiting for another resource acquired by some other

process.

Example:

Here,

• Process P1 holds resource R1 and waits for resource

R2 which is held by process P2.

• Process P2 holds resource R2 and waits for resource

R1 which is held by process P1.

• None of the two processes can complete and release

their resource.

• Thus, both the processes keep waiting infinitely.

Necessary conditions for Deadlocks

o Mutual Exclusion

www.ourcreativeinfo.in

At least one resource must be held in a non-

sharable mode; that is, only one process at a time can

use the resource. If another process requests that

resource, the requesting process must be delayed until

the resource has been released.

o Hold and Wait

A process must be holding at least one resource

and waiting to acquire additional resources that are

currently being held by other processes.

o No preemption

Resources cannot be preempted; that is, a

resource can be released only voluntarily by the

process holding it, after that process has completed its

task.

o Circular Wait

A set {P0, P1, ..., Pn} of waiting processes must

exist such that P0 is waiting for a resource held by

P1, P1 is waiting for a resource held by P2, ..., Pn−1

is waiting for a resource held by Pn, and Pn is waiting

for a resource held by P0.

Deadlock Prevention:

Deadlock prevention is a set of methods for ensuring

that at least one of these necessary conditions cannot

hold.

Mutual Exclusion:

✓ The mutual exclusion condition holds for non

sharable resources.

✓ The example is a printer cannot be

simultaneously shared by several processes.

✓ Sharable resources do not require mutual

exclusive access and thus cannot be involved in a

dead lock.

✓ The example is read only files which are in

sharing condition. If several processes attempt to

open the read only file at the same time they can

be guaranteed simultaneous access.

Hold and wait:

✓ To ensure that the hold and wait condition never

occurs in the system, we must guaranty that

whenever a process requests a resource it does

not hold any other resources.

✓ There are two protocols to handle these problems

such as

▪ One protocol that can be used requires each

process to request and be allocated all its

resources before it begins execution.

▪ The other protocol allows a process to

request resources only when the process

has no resource.

✓ These protocols have two main disadvantages.

▪ First, resource utilization may be low, since

many of the resources may be allocated but

unused for a long period.

▪ Second, starvation is possible.

✓ A process that needs several popular resources

may have to wait indefinitely, because at least

one of the resources that it needs is always

allocated to some other process.

No Preemption:

✓ To ensure that this condition does not hold, a

protocol is used.

✓ If a process is holding some resources and

request another resource, that cannot be

immediately allocated to it.

✓ The preempted one added to a list of resources

for which the process is waiting. The process will

restart only when it can regain its old resources,

as well as the new ones that it is requesting.

✓ Alternatively if a process requests some

resources, we first check whether they are

available. If they are, we allocate them. If they

are not available, we check whether they are

allocated to some other process that is waiting for

additional resources. If so, we preempt the

desired resources from the waiting process and

allocate them to the requesting process.

✓ If the resources are not either available or held by

a waiting process, the requesting process must

wait.

Circular Wait:

✓ One way to avoid circular wait is to number all

resources, and to require that processes request

resources only in strictly increasing (or

decreasing) order.

✓ In other words, in order to request resource Rj, a

process must first release all Ri such that i >= j.

✓ One big challenge in this scheme is determining

the relative ordering of the different resources

✓ For example: Set priorities for R1=1, R2=2, R3=3

and R4=4. With these priorities, if process P

www.ourcreativeinfo.in

wants to use R1 and R3, it should first request R1,

then R3. Another protocol is ―Whenever a process

requests a resource Rj, it must have released all

resources Rk with priority(Rk) >= priority(Rj).

Deadlock avoidance

✓ Deadlock prevention algorithm may lead to low

device utilization and reduces system throughput.

✓ Avoiding deadlocks requires additional

information about how resources are to be

requested.

✓ With the knowledge of the complete sequences of

requests and releases we can decide for each

requests whether or not the process should wait.

✓ A deadlock avoidance algorithm dynamically

examines the resources allocation state to ensure

that a circular wait condition never exists.

✓ The resource allocation state is defined by the

number of available and allocated resources and

the maximum demand of each process.

Safe State:

✓ A state is a safe state in which there exists at least

one order in which all the process will run

completely without resulting in a deadlock.

✓ A system is in safe state if there exists a safe

sequence.

✓ A sequence of processes <P1,P2,… Pn> is a

safe sequence for the current allocation state if

for each Pi the resources that Pi can request can

be satisfied by the currently available resources.

✓ If the resources that Pi requests are not currently

available then Pi can obtain all of its needed

resource to complete its designated task.

✓ A safe state is not a deadlock state.

✓ Whenever a process request a resource i.e.,

currently available, the system must decide

whether resources can be allocated immediately

or whether the process must wait. The request is

granted only if the allocation leaves the system in

safe state.

In this, if a process requests a resource i.e., currently

available it must still have to wait. Thus resource

utilization may be lower than it would be without a

deadlock avoidance algorithm.

Resource Allocation Graph Algorithm:

✓ This algorithm is used only if we have one

instance of a resource type.

✓ In addition to the request edge and the

assignment edge a new edge called claim edge is

used.

✓ For eg:-A claim edge Pi,Rj indicates that process

Pi may request Rj in future. The claim edge is

represented by a dotted line.

▪ When a process Pi requests the

resource Rj, the claim edge is

converted to a request edge. x When

resource Rj is released by process Pi,

the assignment edge Rj Pi is replaced

by the claim edge Pi,Rj.

✓ When a process Pi requests resource Rj the

request is granted only if converting the request

edge Pi Rj to as assignment edge Rj Pi do not

result in a cycle.

✓ Cycle detection algorithm is used to detect the

cycle. If there are no cycles then the allocation of

the resource to process leave the system in safe

state

Banker’s Algorithm:

✓ This algorithm is applicable to the system with

multiple instances of each resource types, but this

is less efficient then the resource allocation graph

algorithm.

✓ When a new process enters the system it must

declare the maximum number of resources that it

may need. This number may not exceed the total

number of resources in the system.

✓ The system must determine that whether the

allocation of the resources will leave the system

in a safe state or not. If it is so resources are

allocated else it should wait until the process

release enough resources.

✓ Several data structures are used to implement the

banker‘s algorithm.

✓ Let ‗n‘ be the number of processes in the system

and ‗m‘ be the number of resources types. We

need the following data structures:

▪ Available:- A vector of length m indicates

the number of available resources. If

Available[i]=k, then k instances of resource

type Rj is available.

www.ourcreativeinfo.in

▪ Max:- An n*m matrix defines the

maximum demand of each process if

Max[i,j]=k, then Pi may request at most k

instances of resource type Rj.

▪ Allocation:- An n*m matrix defines the

number of resources of each type currently

allocated to each process. If

Allocation[i,j]=k, then Pi is currently k

instances of resource type Rj.

▪ Need:- An n*m matrix indicates the

remaining resources need of each process.

If Need[i,j]=k, then Pi may need k more

instances of resource type Rj to compute its

task. So Need[i,j]=Max[i,j]-Allocation[i]

Safety Algorithm:

This algorithm is used to find out whether or not a

system is in safe state or not.

Step 1. Let work and finish be two vectors of length

M and N respectively. Initialize work = available and

Finish[i]=false for i=1,2,3,…….n

Step 2. Find i such that both Finish[i]=false Need i<=

work If no such i exist then go to step 4

Step 3. Work = work + Allocation Finish[i]=true Go

to step 2

Step 4. If finish[i]=true for all i, then the system is in

safe state.

This algorithm may require an order of m*n*n operation

to decide whether a state is safe.

Resource Request Algorithm:

✓ Let Request(i) be the request vector of process Pi.

✓ If Request[i][j]=k,then process Pi wants K

instances of the resource type Rj.

✓ When a request for resources is made by process

Pi the following actions are taken.

▪ If Request(i) <= Need(i) go to step 2

otherwise raise an error condition since the

process has exceeded its maximum claim. x

If Request(i) <= Available go to step 3

otherwise Pi must wait. Since the resources

are not available.

▪ If the system want to allocate the requested

resources to process Pi then modify the

state as follows.

Available = Available – Request(i)

Allocation(i) = Allocation(i) + Request(i)

Need(i) = Need(i) – Request(i)

▪ If the resulting resource allocation state is

safe, the transaction is complete and Pi is

allocated its resources. If the new state is

unsafe then Pi must wait for Request(i) and

old resource allocation state is restored.

www.ourcreativeinfo.in

Unit IV

Memory Management

Memory Management

• Memory consists of a large array of words or bytes,

each with its own address.

• The CPU fetches instructions from memory

according to the value of the program counter. These

instructions may cause additional loading from and

storing to specific memory addresses.

• Memory unit sees only a stream of memory

addresses. It does not know how they are generated.

• Program must be brought into memory and placed

within a process for it to be run.

• Input queue – collection of processes on the disk that

are waiting to be brought into memory for execution.

• User programs go through several steps before being

run.

Base and Limit Register

• Each process has a separate memory space.

• Separate per-process memory space protects the

processes from each other and is fundamental to

having multiple processes loaded in memory for

concurrent execution.

• To separate memory spaces, we need the ability to

determine the range of legal addresses that the

process may access and to ensure that the process can

access only these legal addresses.

• We can provide this protection by using two registers,

usually a base and a limit, as illustrated in Figure 8.1

• The base register holds the smallest legal physical

memory address

• The limit register specifies the size of the range.

• For example, if the base register holds 300040 and

the limit register is 120900, then the program can

legally access all addresses from 300040 through

420939 (inclusive).

• Protection of memory space is accomplished by

having the CPU hardware compare every address

generated in user mode with the registers.

• Any attempt by a program executing in user mode to

access operating-system memory or other users‘

memory results in a trap to the operating system,

which treats the attempt as a fatal error as shown in

below figure.

• This scheme prevents a user program from

(accidentally or deliberately) modifying the code or

data structures of either the operating system or other

users.

Address Binding

• Usually, a program resides on a disk as a binary

executable file. To be executed, the program must be

brought into memory and placed within a process.

• Depending on the memory management in use, the

process may be moved between disk and memory

during its execution.

• The processes on the disk that are waiting to be

brought into memory for execution form the input

queue.

• Addresses in the source program are generally

symbolic (such as the variable count).

• A compiler typically binds these symbolic addresses

to relocatable addresses.

• The linkage editor or loader in turn binds the

relocatable addresses to absolute.

• Each binding is a mapping from one address space to

another.

• Address binding of instructions and data to memory

addresses can happen at three different stages.

✓ Compile time: If memory location known a

priori, absolute code can be generated; must

recompile code if starting location changes.

Example: .COM-format programs in MS-DOS.

✓ Load time: Must generate relocatable code if

memory location is not known at compile time.

www.ourcreativeinfo.in

✓ Execution time: Binding delayed until run time

if the process can be moved during its execution

from one memory segment to another. Need

hardware support for address maps (e.g.,

relocation registers).

Logical Versus Physical Address Space

• The concept of a logical address space that is bound

to a separate physical-address space is central to

proper memory management.

✓ Logical address – address generated by the CPU;

also referred to as virtual address.

✓ Physical address – address seen by the memory

unit.

• The set of all logical addresses generated by a

program is a logical address space; the set of all

physical addresses corresponding to these logical

addresses are a physical address space.

• Logical and physical addresses are the same in

compile-time and load-time address-binding schemes;

logical (virtual) and physical addresses differ in

execution-time address-binding scheme.

• The run-time mapping from virtual to physical

addresses is done by a hardware device called the

memory management unit (MMU).

• This method requires hardware support slightly

different from the hardware configuration. The base

register is now called a relocation register. The value

in the relocation register is added to every address

generated by a user process at the time it is sent to

memory.

• The user program never sees the real physical

addresses. The program can create a pointer to

location 346, store it in memory, manipulate it and

compare it to other addresses.

• The user program deals with logical addresses. The

memory mapping hardware converts logical

addresses into physical addresses.

• The final location of a referenced memory address is

not determined until the reference is made.

Dynamic Loading

• Routine is not loaded until it is called.

• All routines are kept on disk in a relocatable load

format.

• The main program is loaded into memory and is

executed. When a routine needs to call another

routine, the calling routine first checks to see whether

the other the desired routine into memory and to

update the program‘s address tables to reflect this

change. Then control is passed to the newly loaded

routine.

• Advantages

✓ Better memory-space utilization; unused routine

is never loaded.

✓ Useful when large amounts of code are needed to

handle infrequently occurring cases.

✓ No special support from the operating system is

required.

✓ Implemented through program design.

www.ourcreativeinfo.in

Dynamic Linking

• Linking is postponed until execution time.

• Small piece of code, stub, is used to locate the

appropriate memory-resident library routine, or to

load the library if the routine is not already present.

• When this stub is executed, it checks to see whether

the needed routine is already in memory. If not, the

program loads the routine into memory.

• Stub replaces itself with the address of the routine,

and executes the routine.

• Thus the next time that code segment is reached, the

library routine is executed directly, incurring no cost

for dynamic linking.

• Operating system is needed to check if routine is in

processes‘ memory address.

• Dynamic linking is particularly useful for libraries.

Swapping

• A process must be in memory to be executed.

• A process can be swapped temporarily out of memory

to a backing store and then brought back into memory

for continued execution.

• Swapping makes it possible for the total physical

address space of all processes to exceed the real

physical memory of the system, thus increasing the

degree of multiprogramming in a system.

• Roll out, roll in – swapping variant used for priority-

based scheduling algorithms. If a higher priority

process arrives and wants service, the memory

manager can swap out the lower priority process so

that it can load and execute lower priority process can

be swapped back in and continued. This variant is

sometimes called roll out, roll in.

• Backing store: The backing store is commonly a fast

disk. It must be large enough to accommodate copies

of all memory images for all users, and it must

provide direct access to these memory images.

• Major part of swap time is transfer time; total transfer

time is directly proportional to the amount of memory

swapped.

• Modified versions of swapping are found on many

systems (i.e., UNIX, Linux, and Windows).

• For example, assume a multiprogramming

environment with a round robin CPU scheduling

algorithm. When a quantum expires, the memory

manager will start to swap out the process that just

finished, and to swap in another process to the

memory space that has been freed. In the mean time,

the CPU scheduler will allocate a time slice to some

other process in memory. When each process finished

its quantum, it will be swapped with another process

Memory Allocation

• Memory allocation is a process by which computer

programs and services are assigned with physical or

virtual memory space.

• Memory allocation has two core types;

✓ Static Memory Allocation: The program is

allocated memory at compile time.

✓ Dynamic Memory Allocation: The programs are

allocated with memory at run time.

Contiguous Memory Allocation

• Main memory is usually divided into two partitions:

✓ Resident operating system, usually held in low

memory with interrupt vector.

✓ User processes, held in high memory.

• In contiguous memory allocation, each process is

contained in a single contiguous section of memory

1. Single-partition allocation

• Relocation-register scheme used to protect user

processes from each other, and from changing

operating-system code and data.

• Relocation register contains value of smallest

physical address; limit register contains range of

logical addresses – each logical address must be less

than the limit register.

www.ourcreativeinfo.in

2. Multiple-partition allocation

• Hole – block of available memory; holes of various

size are scattered throughout memory.

• When a process arrives, it is allocated memory from a

hole large enough to accommodate it.

• Operating system maintains information about:

a) allocated partitions b) free partitions (hole)

• When a process arrives and needs memory, the

system searches this set for a hole that is large enough

for this process.

• If the hole is too large, it is split into two: one part is

allocated to the arriving process; the other is returned

to the set of holes.

• When a process terminates, it releases its block of

memory, which is then placed back in the set of

holes.

• This procedure is a particular instance of the general

dynamic storage allocation problem, which is how to

satisfy a request of size n from a list of free holes.

• There are many solutions to this problem. The set of

holes is searched to determine which hole is best to

allocate.

• The first-fit, best-fit and worst-fit strategies are the

most common ones used to select a free hole from the

set of available holes.

✓ First fit: Allocate the first hole that is big

enough. Searching can start either at the

beginning of the set of holes or at the location

where the previous first-fit search ended. We can

stop searching as soon as we find a free hole that

is large enough.

✓ Best fit: Allocate the smallest hole that is big

enough. We must search the entire list, unless the

list is ordered by size. This strategy produces the

smallest leftover hole.

✓ Worst fit: Allocate the largest hole. Again, we

must search the entire list, unless it is sorted by

size. This strategy produces the largest leftover

hole, which may be more useful than the smaller

leftover hole from a best-fit approach.

Fragmentation

• As processes are loaded and removed from memory,

the free memory space is broken into little pieces.

• It happens after sometimes that processes cannot be

allocated to memory blocks considering their small

size and memory blocks remains unused. This

problem is known as Fragmentation.

• There are two types of Fragmentation:-

1. External Fragmentation

2. Internal Fragmentation

• External Fragmentation – total memory space

exists to satisfy a request, but it is not contiguous.

• Internal Fragmentation – allocated memory may be

slightly larger than requested memory; this size

difference is memory internal to a partition, but not

being used.

• Compaction

✓ Reduce external fragmentation by compaction

✓ Shuffle memory contents to place all free

memory together in one large block.

✓ Compaction is possible only if relocation is

dynamic, and is done at execution time.

Paging

• Paging is a memory management scheme that permits

the physical address space of a process to be non

contiguous.

• Divides physical memory into fixed-sized blocks

called frames.

www.ourcreativeinfo.in

• Divide logical memory into blocks of same size

called pages.

• When a process is to be executed, its pages are loaded

into any available memory frames from the backing

store.

• The backing store is divided into fixed sized blocks

that are of the same size as the memory frames.

• The hardware support for paging is illustrated in

below figure.

• Every address generated by the CPU is divided into

two parts: a page number (p) and a page offset (d).

• The page number is used as an index into a page

table. The page table contains the base address of

each page in physical memory.

• This base address is combined with the page offset to

define the physical memory address that is sent to the

memory unit.

• The paging model of memory is shown in Figure

• The page size (like the frame size) is defined by the

hardware.

• The size of a page is a power of 2, varying between

512 bytes and 1 GB per page, depending on the

computer architecture.

• The selection of a power of 2 as a page size makes

the translation of a logical address into a page number

and page offset particularly easy.

• If the size of the logical address space is 2m, and a

page size is 2n bytes, then the high-order m − n bits

of a logical address designate the page number, and

the n low-order bits designate the page offset.

• Thus, the logical address is as follows:

• For example, consider the memory in below Figure,

✓ Here, in the logical address, n= 2 and m = 4.

✓ Using a page size of 4 bytes and a physical

memory of 32 bytes (8 pages).

✓ Logical address 0 is page 0, offset 0.

✓ Indexing into the page table, we find that page 0

is in frame 5. Thus, logical address 0 maps to

physical address 20 [= (5 × 4) + 0].

✓ Logical address 3 (page 0, offset 3) maps to

physical address 23 [= (5 × 4) + 3].

✓ Logical address 4 is page 1, offset 0; according to

the page table, page 1 is mapped to frame 6.

Thus, logical address 4 maps to physical address

24 [= (6 × 4) + 0].

✓ There for , Physical address = [(page size of

logical memory X frame number) + offset]

• When a process arrives in the system to be executed,

its size expressed in pages is examined.

www.ourcreativeinfo.in

• Each page of the process needs one frame. Thus if the

process requires n pages, at least n frames must be

available in memory.

• If n frames are available, they are allocated to this

arriving process.

• The first page of the process is loaded into one of the

allocated frames, and the frame number is put in the

page table for this process. The next page is loaded

into another frame, and its frame number is put into

the page table and so on as in below figure.

Virtual Memory

• It is a technique which allows execution of process

that may not be compiled within the primary

memory.

• It separates the user logical memory from the

physical memory. This separation allows an

extremely large memory to be provided for program

when only a small physical memory is available.

• Virtual memory makes the task of programming

much easier because the programmer no longer needs

to working about the amount of the physical memory

is available or not.

• The virtual memory allows files and memory to be

shared by different processes by page sharing.

• It is most commonly implemented by demand paging.

• Advantages of Virtual Memory

✓ The degree of Multiprogramming will be

increased.

✓ User can run large application with less real

RAM.

✓ There is no need to buy more memory RAMs.

• Disadvantages of Virtual Memory

✓ The system becomes slower since swapping takes

time.

✓ It takes more time in switching between

applications.

✓ The user will have the lesser hard disk space for

its use.

1. Demand Paging

• The basic idea behind demand paging is that when a

process is swapped in, its pages are not swapped in

all at once. Rather they are swapped in only when the

process needs them. (on demand.) This is termed

a lazy swapper, although a pager is a more accurate

term.

• A demand paging system is similar to the paging

system with swapping feature.

• When we want to execute a process we swap it into

the memory. A swapper manipulates entire process

where as a pager is concerned with the individual

pages of a process.

• The demand paging concept is using pager rather than

swapper.

• When a process is to be swapped in, the pager

guesses which pages will be used before the process

is swapped out again.

• Instead of swapping in a whole process, the pager

brings only those necessary pages into memory.

• The transfer of a paged memory to contiguous disk

space is shown in below figure.

www.ourcreativeinfo.in

• Thus it avoids reading into memory pages that will

not used any way decreasing the swap time and the

amount of physical memory needed.

• In this technique we need some hardware support to

distinct between the pages that are in memory and

those that are on the disk.

• A valid and invalid bit is used for this purpose.

• When this bit is set to valid it indicates that the

associate page is in memory. If the bit is set to invalid

it indicates that the page is either not valid or is valid

but currently not in the disk.

• Marking a page invalid will have no effect if the

process never attempts to access that page. So while a

process executes and access pages that are memory

resident, execution proceeds normally.

• Access to a page marked invalid causes a page fault

trap. It is the result of the OS‘s failure to bring the

desired page into memory.

• Procedure to handle page fault

If a process refers to a page that is not in

physical memory then

✓ We check an internal table (page table) for this

process to determine whether the reference was

valid or invalid.

✓ If the reference was invalid, we terminate the

process, if it was valid but not yet brought in, we

have to bring that from main memory.

✓ Now we find a free frame in memory.

✓ Then we read the desired page into the newly

allocated frame.

✓ When the disk read is complete, we modify the

internal table to indicate that the page is now in

memory.

✓ We restart the instruction that was interrupted by

the illegal address trap. Now the process can

access the page as if it had always been in

memory.

2. Page Replacement

• Each process is allocated frames (memory) which

hold the process‘s pages (data)

• Frames are filled with pages as needed – this is called

demand paging

• Over-allocation of memory is prevented by

modifying the page-fault service routine to replace

pages

• The job of the page replacement algorithm is to

decide which page gets victimized to make room for

a new page

• Page replacement completes separation of logical and

physical memory.

Basic Page Replacement

• Page replacement takes the following approach.

• If no frame is free, we find one that is not currently

being used and free it.

• We can free a frame by writing its contents to swap

space and changing the page table (and all other

tables) to indicate that the page is no longer in

memory (Figure 9.10).

www.ourcreativeinfo.in

• We can now use the freed frame to hold the page for

which the process faulted.

• We modify the page-fault service routine to include

page replacement:

✓ Find the location of the desired page on the disk.

✓ Find a free frame:

▪ If there is a free frame, use it.

▪ If there is no free frame, use a page-

replacement algorithm to select a victim

frame.

▪ Write the victim frame to the disk; change the

page and frame tables accordingly.

✓ Read the desired page into the newly freed frame;

change the page and frame tables.

✓ Continue the user process from where the page

fault occurred.

Page Replacement Algorithms

I. First In First Out (FIFO) Algorithm

• Replaces pages based on their order of arrival: oldest

page is replaced

• The simplest page-replacement algorithm is a first-in,

first-out (FIFO) algorithm.

• When a page must be replaced, the oldest page is

chosen.

• We replace the page at the head of the queue.

• When a page is brought into memory, we insert it at

the tail of the queue.

• For example:

Reference string : 7,0,1,2,0,3,0,4,2,3,0,7,1.

Number of Frames : 3

Solution:

Three frames are initially empty.

Number of page faults

= (3+1+1+1+1+1+1+1+1+1+1+1) = 15 page faults

Explanation:

✓ The first three references (7, 0, 1) cause page

faults and are brought into these empty frames.

✓ The next reference (2) replaces page 7, because

page 7 was brought in first.

✓ Since 0 is the next reference and 0 is already in

memory, we have no fault for this reference.

✓ The first reference to 3 results in replacement of

page 0, since it is now first in line. Because of

this replacement, the next reference, to 0, will

fault. Page 1 is then replaced by page 0.

✓ This process continues as shown in above Figure.

✓ Every time a fault occurs, we show which pages

are in our three frames.

✓ There are fifteen faults altogether.

II. Optimal Page Replacement

• Replace the page that will not be used for the longest

period of time.

• Use of this page-replacement algorithm guarantees

the lowest possible page fault rate for a fixed number

of frames.

• For example:

Reference string : 7,0,1,2,0,3,0,4,2,3,0,7,1.

Number of Frames : 3

Solution:

Three frames are initially empty.

Number of page faults = (3+1+1+1+1+1+1) = 9.

Explanation:

✓ The first three references cause faults that fill the

three empty frames.

✓ The reference to page 2 replaces page 7, because

page 7 will not be used until reference 18,

whereas page 0 will be used at 5, and page 1 at

14.

✓ The reference to page 3 replaces page 1, as page

1 will be the last of the three pages in memory to

be referenced again.

✓ In fact, no replacement algorithm can process this

reference string in three frames with fewer than

nine faults

III. LRU Page Replacement

• If we use the recent past as an approximation of the

near future, then we can replace the page that has not

been used for the longest period of time. This

approach is the least recently used (LRU) algorithm.

• Replaces pages based on their most recent reference –

replace the page with the greatest backward distance

in the reference string

www.ourcreativeinfo.in

Explanation:

• The LRU algorithm produces twelve faults. When the

reference to page 4 occurs, however, LRU

replacement sees that, of the three frames in memory,

page 2 was used least recently. Thus, the LRU

algorithm replaces page 2, not knowing that page 2 is

about to be used.

• When it then faults for page 2, the LRU algorithm

replaces page 3, since it is now the least recently used

of the three pages in memory.

• Despite these problems, LRU replacement with

twelve faults.

Thrashing

• If a process does not have ―enough‖ pages, the page-

fault rate is very high

✓ low CPU utilization

✓ OS thinks it needs increased multiprogramming

✓ adds another process to system

• Thrashing is when a process is busy swapping pages

in and out

• Thrashing results in severe performance problems.

Consider the following scenario, which is based on

the actual behavior of early paging systems.

• The operating system monitors CPU utilization. If

CPU utilization is too low, we increase the degree of

multiprogramming by introducing a new process to

the system.

• A global page replacement algorithm is used; it

replaces pages with no regard to the process to which

they belong.

• Now suppose that a process enters a new phase in its

execution and needs more frames.

UNIT V

Input Output (I/O) Management

DISK STRUCTURE

• Disks provide the bulk of secondary storage for

modern computer systems.

• Magnetic tape was used as an early secondary-storage

medium, but the access time is much slower than for

disks.

• Modern disk drives are addressed as large one-

dimensional arrays of logical blocks, where the

logical block is the smallest unit of transfer.

• The size of a logical block is usually 512 bytes,

although some disks can be low-level formatted to

choose a different logical block size, such as 1,024

bytes.

• The one-dimensional array of logical blocks is

mapped onto the sectors of the disk sequentially.

Sector 0 is the first sector of the first track on the

outermost cylinder.

• The mapping proceeds in order through that track,

then through the rest of the tracks in that cylinder,

and then through the rest of the cylinders from

outermost to innermost.

DISK SCHEDULING

• One of the responsibilities of the OS is to use the

hardware efficiently. This will help in achieving fast

access time and disk bandwidth.

• The access time has two major components:

✓ The seek time is the time for the disk arm to

move the heads to the cylinder containing the

desired sector.

✓ The rotational latency is the additional time

waiting for the disk to rotate the desired sector to

the disk head.

• The disk bandwidth is the total number of bytes

transferred, divided by the total time between the first

request for service and the completion of the last

transfer.

• We can improve both the access time and the

bandwidth by scheduling the servicing of disk I/O

requests in a good order.

www.ourcreativeinfo.in

• Whenever a process needs I/O to or from the disk, it

issues a system call to the operating system. The

request specifies several pieces of information:

✓ Whether this operation is input or output

✓ What the disk address for the transfer is

✓ What the memory address for the transfer is

✓ What the number of bytes to be transferred is

• If the desired disk drive and controller are available,

the request can be serviced immediately. If the drive

or controller is busy, any new requests for service

will be placed on the queue of pending requests for

that drive.

• For a multiprogramming system with many

processes, the disk queue may often have several

pending requests. Thus, when one request is

completed, the operating system chooses which

pending request to service next.

Disk Scheduling Algorithms

I. FCFS Scheduling

• The simplest form of disk scheduling is, of course,

the first-come, first-served (FCFS) algorithm.

• This algorithm is intrinsically fair, but it generally

does not provide the fastest service.

Example:

Consider a disk queue with requests for I/O to

blocks on cylinders:98, 183, 37, 122, 14, 124, 65, 67 in

that order. There are 200 cylinders numbered from 0 to

199. The disk head is initially at the cylinder 53.

Compute total head movements.

Solution:

Starting with cylinder 53, it will first move from

53 to 98, then to 183, 37, 122, 14,124, 65, and finally to

67 as shown in Figure.

Head movement from 53 to 98 = 45

Head movement from 98 to 183 = 85

Head movement from 183 to 37 = 146

Head movement from 37 to 122 =85

Head movement from 122 to 14 =108

Head movement from 14 to 124 =110

Head movement from 124 to 65 =59

Head movement from 65 to 67 = 2

Total head movement = 640

II. SSTF Scheduling

• The SSTF (shortest-seek-time-first) algorithm selects

the request with the minimum seek time from the

current head position.

• Since seek time increases with the number of

cylinders traversed by the head, SSTF chooses the

pending request closest to the current head position.

Example:

Consider a disk queue with requests for I/O to

blocks on cylinders: 98, 183, 37, 122, 14, 124, 65, 67

in that order. There are 200 cylinders numbered from 0

to 199. The disk head is initially at the cylinder 53.

Compute total head movements.

Solution:

The closest request to the initial head position 53

is at cylinder 65. Once we are at cylinder 65, the next

closest request is at cylinder 67. From there, the request

at cylinder 37 is closer than 98, so 37 is served next.

Continuing, we service the request at cylinder 14, then

98, 122, 124, and finally 183. It is shown in Figure.

Head movement from 53 to 65 = 12

Head movement from 65 to 67 = 2

Head movement from 67 to 37 = 30

Head movement from 37 to 14 =23

Head movement from 14 to 98 =84

Head movement from 98 to 122 =24

Head movement from 122 to 124 =2

Head movement from 124 to 183 = 59

Total head movement = 236

www.ourcreativeinfo.in

III. SCAN Scheduling

• In the SCAN algorithm, the disk arm starts at one end

of the disk, and moves toward the other end,

servicing requests as it reaches each cylinder, until it

gets to the other end of the disk.

• At the other end, the direction of head movement is

reversed, and servicing continues. The head

continuously scans back and forth across the disk.

Example:

Consider a disk queue with requests for I/O to

blocks on cylinders: 98, 183, 37, 122, 14, 124, 65, 67 in

that order. There are 200 cylinders numbered from 0 to

199. The disk head is initially at the cylinder 53.

Compute total head movements.

Solution:

• Before applying SCAN algorithm, we need to know

the current direction of head movement. Assume that

disk arm is moving toward 0, the head will service 37

and then 14.

• At cylinder 0, the arm will reverse and will move

toward the other end of the disk, servicing the

requests at 65,67,98, 122, 124, and 183 It is shown in

Figure.

Head movement from 53 to 37 = 16

Head movement from 37 to 14 = 23

Head movement from 14 to 0 = 14

Head movement from 0 to 65 =65

Head movement from 65 to 67 =2

Head movement from 67 to 98 =31

Head movement from 98 to 122 =24

Head movement from 122 to 124 = 2

Head movement from 124 to 183 = 59

Total head movement = 236

IV. C- SCAN Scheduling

• Circular SCAN (C-SCAN) scheduling is a variant of

SCAN designed to provide a more uniform wait time.

• Like SCAN, C-SCAN moves the head from one end

of the disk to the other, servicing requests along the

way.

• When the head reaches the other end, however, it

immediately returns to the beginning of the disk,

without servicing any requests on the return trip.

• The C-SCAN scheduling algorithm essentially treats

the cylinders as a circular list that wraps around from

the final cylinder to the first one.

Example:

Consider a disk queue with requests for I/O to

blocks on cylinders: 98, 183, 37, 122, 14, 124, 65, 67 in

that order. There are 200 cylinders numbered from 0 to

199. The disk head is initially at the cylinder 53.

Compute total head movements.

Solution:

Before applying C - SCAN algorithm, we need

to know the current direction of head movement.

Assume that disk arm is moving toward 199, the

head will service 65, 67, 98, 122, 124, 183.Then it will

move to 199 and the arm will reverse and move towards

0. While moving towards 0, it will not serve. But, after

reaching 0, it will reverse again and then serve 14 and

37. It is shown in Figure

Head movement from 53 to 65 = 12

Head movement from 65 to 67 = 2

Head movement from 67 to 98 = 31

Head movement from 98 to 122 =24

Head movement from 122 to 124 =2

Head movement from 124 to 183 =59

Head movement from 183 to 199 =16

Head movement from 199 to 0 = 199

www.ourcreativeinfo.in

Head movement from 0 to 14 = 14

Head movement from 14 to 37 = 23

Total head movement = 382

V. Look Scheduling

• As we described them, both SCAN and C-SCAN

move the disk arm across the full width of the disk.

• In practice, neither algorithm is implemented this

way. More commonly, the arm goes only as far as the

final request in each direction then, it reverses

direction immediately, without going all the way to

the end of the disk.

• These versions of SCAN and C-SCAN are called

LOOK and C-LOOK scheduling, because they look

for a request before continuing to move in a given

direction.

Example:

Consider a disk queue with requests for I/O to

blocks on cylinders: 98, 183, 37, 122, 14, 124, 65, 67 in

that order. There are 200 cylinders numbered from 0 to

199. The disk head is initially at the cylinder 53.

Compute total head movements.

Solution:

Assume that disk arm is moving toward 199, the

head will service 65, 67, 98,122, 124, 183. Then the arm

will reverse and move towards 14. Then it will serve 37.

It is shown in Figure

Head movement from 53 to 65 = 12

Head movement from 65 to 67 = 2

Head movement from 67 to 98 = 31

Head movement from 98 to 122 =24

Head movement from 122 to 124 =2

Head movement from 124 to 183 =59

Head movement from 183 to 14 = 169

Head movement from 14 to 37 = 23

Total head movement = 322

DISK MANAGEMENT

The OS is responsible for several other aspects

of disk management as well.

Disk Formatting

• A new magnetic disk is a blank slate: It is just platters

of a magnetic recording material.

• Before a disk can store data, it must be divided into

sectors that the disk controller can read and write.

This process is called low-level formatting (or

physical formatting).

• Low-level formatting fills the disk with a special data

structure for each sector.

• To use a disk to hold files, the OS needs to record its

own data structures on the disk.

• It does so in two steps.

✓ The first step is to partition the disk into one or

more groups of cylinders. The OS treats each

partition as though it were a separate disk.

✓ After partitioning, the second step is logical

formatting (or creation of a file system). In this

step, the OS stores the initial file-system data

structures onto the disk. These data structures

may include maps of free and allocated space and

an initial empty directory.

Boot Blocks

• For a computer to start running, it needs to have an

initial program to run. This bootstrap program

initializes all aspects of the system, from CPU

registers to device controllers and the contents of

main memory, and then starts the OS.

www.ourcreativeinfo.in

• To do its job, the bootstrap program finds the OS

kernel on disk, loads that kernel into memory, and

jumps to an initial address to begin the operating-

system execution.

Bad Blocks

• Because disks have moving parts and small

tolerances, they are prone to failure.

• Sometimes the failure is complete, and the disk needs

to be replaced, and its contents restored from backup

media to the new disk.

• More frequently, one or more sectors become

defective. Most disks even come from the factory

with bad blocks.

• Depending on the disk and controller in use, these

blocks are handled in a variety of ways:

✓ On simple disks with IDE, bad blocks are

handled manually (like formatting the disk)

✓ The controller maintains a list of bad blocks on

the disk. The list is initialized during the low-

level format at the factory, and is updated over

the life of the disk.

SWAP SPACE MANAGEMENT

• Swap-space — Virtual memory uses disk space as an

extension of main memory.

• Swap-space can be carved out of the normal file

system, or, more commonly, it can be in a

separate disk partition.

• BSD allocates swap space when process starts; holds

text segment (the program) and data segment.

• Kernel uses swap maps to track swap-space use.

Solaris 2 allocates swap space only when a page is

forced out of physical memory, not when the virtual

memory page is first created.

File concept:

• A file is a collection of related information that is

stored on secondary storage.

• Information stored in files must be persistent i.e. not

affected by power failures & system reboots. Files

may be of free from such as text files or may be

formatted rigidly.

• Files represent both programs as well as data.

• Part of the OS dealing with the files is known as file

system.

• The important file concepts include:

1. File attributes:

A file has certain attributes which vary from one

operating system to another.

✓ Name: Every file has a name by which it is

referred.

✓ Identifier: It is unique number that identifies the

file within the file system.

✓ Type: This information is needed for those

systems that support different types of files.

✓ Location: It is a pointer to a device & to the

location of the file on that device

✓ Size: It is the current size of a file in bytes,

words or blocks.

✓ Protection: It is the access control information

that determines who can read, write & execute a

file.

✓ Time, date & user identification: It gives

information about time of creation or last

modification & last use.

2. File operations:

The operating system can provide system calls to

create, read, write, reposition, delete and truncate files.

✓ Creating files: Two steps are necessary to create

a file. First, space must be found for the file in

the file system. Secondly, an entry must be made

in the directory for the new file.

✓ Reading a file: Data & read from the file at the

current position. The system must keep a read

pointer to know the location in the file from

where the next read is to take place. Once the

read has been taken place, the read pointer is

updated.

✓ Writing a file: Data are written to the file at the

current position. The system must keep a write

pointer to know the location in the file where the

next write is to take place. The write pointer must

be updated whenever a write occurs.

✓ Repositioning within a file (seek): The directory

is searched for the appropriate entry & the current

file position is set to a given value. After

repositioning data can be read from or written

into that position.

✓ Deleting a file: To delete a file, we search the

directory for the required file. After deletion, the

space is released so that it can be reused by other

files.

www.ourcreativeinfo.in

✓ Truncating a file: The user may erase the

contents of a file but allows all attributes to

remain unchanged expect the file length which is

rest to ‗O‘ & the space is released

3. File types:

• The file name is spilt into 2 parts, Name & extension.

Usually these two parts are separated by a period. The

user & the OS can know the type of the file from the

extension itself.

• Listed below are some file types along with their

extension:

File Type Extension

✓ Executable File exe, bin, com

✓ Object File obj, o (compiled)

✓ Source Code file C, C++, Java, pas

✓ Batch File bat, sh

✓ Text File txt, doc

✓ Archive File arc, zip, tar

✓ Multimedia File mpeg

4. File structure:

Files can be structured in several ways. Three common

possible are:

a) Byte sequence:

• The figure shows an unstructured sequence of

bytes. The OS doesn‘t care about the content of

file. It only sees the bytes.

• This structure provides maximum flexibility.

• Users can write anything into their files & name

them according to their convenience.

• Both UNIX & windows use this approach.

b) Record sequence:

• In this structure, a file is a sequence of fixed

length records.

• Here the read operation returns one records & the

write operation overwrites or append or record.

c) Tree:

• In this organization, a file consists of a tree of

records of varying lengths.

• Each record consists of a key field.

• The tree is stored on the key field to allow first

searching for a particular key.

5. Access methods:

Basically, access method is divided into 2 types:

Sequential access:

• It is the simplest access method. Information in the

file is processed in order i.e. one record after another.

• A process can read all the data in a file in order

starting from beginning but can‘t skip & read

arbitrarily from any location.

• Sequential files can be rewound.

• It is convenient when storage medium was magnetic

tape rather than disk.

Direct access:

• A file is made up of fixed length-logical records that

allow programs to read & write records rapidly in no

particular O order.

• This method can be used when disk are used for

storing files.

• This method is used in many applications e.g.

database systems.

• If an airline customer wants to reserve a seat on a

particular flight, the reservation program must be able

to access the record for that flight directly without

reading the records before it.

• In a direct access file, there is no restriction in the

order of reading or writing.

• For example, we can read block 14, then read block

50 & then write block 7 etc. Direct access files are

very useful for immediate access to large amount of

information.

Directory structure:

• The file system of computers can be extensive. Some

systems store thousands of file on disk. To manage all

these data, we need to organize them.

The organization is done in 2 steps. The file system is

broken into partitions. Each partition contains

information about file within it.

www.ourcreativeinfo.in

Operation on a directory:

✓ Search for a file: We need to be able to search a

directory for a particular file.

✓ Create a file: New files are created & added to

the directory.

✓ Delete a file: When a file is no longer needed, we

may remove it from the directory.

✓ List a directory: We should be able to list the

files of the directory.

✓ Rename a file: The name of a file is changed

when the contents of the file changes.

✓ Traverse the file system: It is useful to be able

to access every directory & every file within a

directory.

Structure of a directory:

The most common schemes for defining the

structure of the directory are:

1. Single level directory:

• It is the simplest directory structure.

• All files are present in the same directory.

• So it is easy to manage & understand. Limitation:

A single level directory is difficult to manage

when the no. of files increases or when there is

more than one user.

• Since all files are in same directory, they must

have unique names. So, there is confusion of file

names between different users.

2. Two level directories:

• The solution to the name collision problem in

single level directory is to create a separate

directory for each user.

• In a two level directory structure, each user has its

own user file directory. When a user logs in, then

master file directory is searched. It is indexed by

user name & each entry points to the UFD of that

user.

• Limitation: It solves name collision problem. But

it isolates one user from another.

• It is an advantage when users are completely

independent. But it is a disadvantage when the

users need to access each other‘s files & co-

operate among themselves on a particular task.

3. Tree structured directories:

• It is the most common directory structure.

• A two level directory is a two level tree. So, the

generalization is to extend the directory structure

to a tree of arbitrary height.

• It allows users to create their own subdirectories &

organize their files.

• Every file in the system has a unique path name.

• It is the path from the root through all the sub-

directories to a specified file.

• A directory is simply another file but it is treated

in a special way. One bit in each directory entry

defines the entry as a file (O) or as sub-

directories.

