
MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Chapter-1

Overview of Dart Packages
Introduction to Dart Packages

● What are Dart Packages?

Dart packages are collections of reusable code that can be shared across different

Dart projects. They help to modularize and reuse code efficiently.

● Importance and Benefits of Using Packages

○ Reusability: Packages allow developers to reuse existing code, saving time

and effort.

○ Modularity: Breaking down code into smaller, manageable pieces.

○ Community Support: Many packages are developed and maintained by the

community, providing a wide range of functionalities.

● Types of Packages

○ Pub Packages: Available on the pub.dev repository. They can be easily

added to any Dart project.

○ User-defined Packages: Custom packages created by developers to share

specific functionalities across their own projects.

Finding and Adding Packages from pub.dev

● Finding Packages

○ Visit pub.dev to search for packages.

○ Use keywords or browse categories to find the desired package.

● Adding Dependencies to pubspec.yaml

Dependencies:

yaml:

http: ^0.14.0

● Installing Packages

○ Run flutter pub get in the terminal to install the packages specified in

pubspec.yaml.

Using and Managing Packages

Adding Dependencies to pubspec.yaml

● Understanding pubspec.yaml

https://pub.dev/
https://pub.dev/

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

○ The pubspec.yaml file is the configuration file for Dart and Flutter

projects, specifying project dependencies and other settings.

● Example of Adding Dependencies

name: my_app

description: A new Flutter project.

dependencies:

flutter:

sdk: flutter

provider: ^6.0.0

http: ^0.14.0

Installing Packages

● After adding dependencies to pubspec.yaml, run flutter pub get to fetch

and install the packages.

Creating and Importing User-Defined Packages

Structure of a Dart Package

Basic Structure

my_package/

├── lib/
│ ├── src/
│ │ └── my_package_base.dart
│ └── my_package.dart
├── test/
│ └── my_package_test.dart
├── pubspec.yaml
└── README.md

● Explanation

○ lib/: Contains the main code of the package.

○ src/: Subdirectory for implementation files.

○ my_package.dart: Entry point for the package.

○ test/: Directory for unit tests.

○ pubspec.yaml: Configuration file for the package.

Creating a Simple Package

1. Create Package Directory Structure

○ Use the following command to create a new package:

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Command : dart create -t package-simple my_package

2. Implementing Package Functionality

● Example: Create a simple utility function in lib/my_package.dart:

dart

library my_package;

int add(int a, int b) {

return a + b;

}

1. Publishing a Package

○ Update pubspec.yaml with necessary information.

○ Run dart pub publish to publish the package to pub.dev.

Importing and Using Custom Packages in a Flutter Project

1. Add Package as Dependency

○ In the Flutter project, add the custom package to pubspec.yaml

dependencies:

flutter:

sdk: flutter

my_package:

path: ../my_package

Import and Use the Package

Example:

import 'package:my_package/my_package.dart';

void main() {

int result = add(3, 4);

print('The result is $result');

}

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Chapter-2

Asynchronous Programming with Future and Async/Await

Understanding Future

● What is a Future?

○ A Future represents a potential value or error that will be available at some

time in the future.

○ It is used for asynchronous programming in Dart.

● Creating a Future

Future<String> fetchData() async {

return 'Hello, Future!';

}

● Using then() Method then() method is used to register callbacks when the future

completes.

fetchData().then((value) {

print(value); // Output: Hello, Future!

});

Using async and await for Asynchronous Operations

● async and await Keywords

○ async keyword is used to declare an asynchronous function.

○ await keyword is used to wait for the completion of a future.

Example of async and await

Future<void> main() async {

String data = await fetchData();

print(data); // Output: Hello, Future!

}

Error Handling in Asynchronous Code

● Use try-catch blocks to handle errors in asynchronous code.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Future<void> main() async {

try {

String data = await fetchData();

print(data);

} catch (e) {

print('Error: $e');

}

}

Future<String> fetchData() async {

await Future.delayed(Duration(seconds: 2)); // Simulate network delay

return 'Data from server';

}

Future<void> main() async {

print('Fetching data...');

String data = await fetchData();

print(data); // Output: Data from server

}

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Chapter-3

REST API Basics

Web Server

A web server is a software application that handles HTTP requests from clients (typically web

browsers) and serves HTTP responses. The primary functions of a web server are to store,

process, and deliver web pages to clients. Popular web servers include Apache, Nginx, and

Microsoft IIS.

Host

In the context of web services, a host refers to the domain name or IP address of the server

where the web application is deployed. For example, in the URL http://www.example.com,

www.example.com is the host.

HTTP Protocol

HTTP (Hypertext Transfer Protocol) is the foundation of any data exchange on the web. It is

an application layer protocol for transmitting hypermedia documents, such as HTML. It is

designed for communication between web browsers and web servers, but it can also be

used for other purposes.

HTTP Request Methods

HTTP defines several request methods to perform different actions:

● GET: Requests data from a specified resource.

● POST: Submits data to be processed to a specified resource.

● PUT: Updates a current resource with new data.

● DELETE: Deletes a specified resource.

● PATCH: Applies partial modifications to a resource.

HTTP Response Object

An HTTP response is the data a server sends back to a client after receiving and processing

an HTTP request. Key components of an HTTP response are:

● Status Line: Includes the HTTP version, status code, and status message (e.g.,

HTTP/1.1 200 OK).

● Headers: Provide metadata about the response (e.g., Content-Type, Content-Length).

● Body: Contains the data requested or the result of the POST operation.

http://www.example.com/
http://www.example.com/

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Response Types

● text/html: Indicates the response content is HTML.

● application/json: Indicates the response content is JSON (JavaScript Object

Notation), a lightweight data-interchange format.

JSON (JavaScript Object Notation)

JSON is a lightweight data-interchange format that is easy for humans to read and write, and

easy for machines to parse and generate. It is commonly used for transmitting data in web

applications, particularly between a server and a client.

Structure of JSON

JSON is built on two structures:

1. Objects: An unordered collection of key/value pairs. Each key is a string, and the

value can be a string, number, object, array, true, false, or null.

2. Arrays: An ordered list of values. Each value can be a string, number, object, array,

true, false, or null.

JSON Syntax

● Objects are enclosed in curly braces {} and contain key/value pairs.

● Arrays are enclosed in square brackets [] and contain values.

● Key/Value Pairs are written as "key": value.

Example of a JSON Object

{
"name": "John Doe",
"age": 30,
"isStudent": false,
"address": {
"street": "123 Main St",
"city": "Anytown",
"zipcode": "12345"

},
"courses": ["Math", "Science", "History"]

}

This JSON object represents a person with the following details:

● name: A string "John Doe"

● age: A number 30

● isStudent: A boolean false

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

● address: An object with nested key/value pairs

● courses: An array of strings

Example of a JSON Array

[
{
"name": "Alice",
"age": 25,
"email": "alice@example.com"

},
{
"name": "Bob",
"age": 28,
"email": "bob@example.com"

}
]
This JSON array contains two objects, each representing a person with name, age, and email
fields.

Web APIs

Web APIs are the most common type of APIs used in web development. They allow

communication between client applications (like web browsers or mobile apps) and

server-side applications.

RESTful APIs

REST (Representational State Transfer) is a popular architectural style for designing

networked applications. RESTful APIs use standard HTTP methods and are stateless, meaning

each request from a client to the server must contain all the information needed to

understand and process the request.

Key Characteristics of RESTful APIs

● Stateless: Each request from the client to the server must contain all the information

needed to understand and process the request.

● Client-Server Architecture: Separation of client and server responsibilities.

● Uniform Interface: Standardized way of accessing resources.

● Resource Identification: Resources are identified using URIs (Uniform Resource

Identifiers).

● Representation: Resources are represented using standard formats such as JSON or

XML.

● Self-Descriptive Messages: Each message contains enough information to describe

how to process the message.

mailto:alice@example.com
mailto:alice@example.com
mailto:bob@example.com
mailto:bob@example.com

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

HTTP Library in Dart

The http package in Dart allows you to make HTTP requests to interact with REST APIs.

Here's a brief overview of the methods and their return types:

● GET: Retrieves data from a server. Returns Future<http.Response>.

● POST: Sends data to a server to create a resource. Returns Future<http.Response>.

● PUT: Updates an existing resource on the server. Returns Future<http.Response>.

● DELETE: Deletes a resource on the server. Returns Future<http.Response>.

Example of GET Method

import 'package:http/http.dart' as http;

import 'dart:convert';

void main() async {

await fetchData();

}

Future<void> fetchData() async {

final response = await

http.get(Uri.parse('https: jsonplaceholder.typicode.com/posts'));

if (response.statusCode = 200) {

 If the server returns a 200 OK response, parse the JSON

List<dynamic> data = json.decode(response.body);

print(data);

} else {

 If the server does not return a 200 OK response, throw an exception

throw Exception('Failed to load data');

}

}

Explanation

This Dart program demonstrates how to make a simple HTTP GET request to retrieve data

from a REST API using the http package. The main function, marked as async, initiates the

process by calling the fetchData function and waiting for it to complete. Inside fetchData, an

HTTP GET request is made to https://jsonplaceholder.typicode.com/posts to fetch a list of

posts. The response is awaited, and upon success (status code 200), the JSON data in the

response body is decoded into a Dart list and printed.

If the response status code is not 200, the program throws an exception indicating that the

data could not be loaded. This example illustrates basic error handling and JSON parsing,

showcasing how to fetch and handle data from a web service in Dart.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Chapter-4

Creating Product Service API

Introduction to Flask

Flask is a lightweight and flexible web framework for Python that allows you to build web

applications quickly with minimal code. It provides essential tools and libraries to handle

routing, request handling, and templating, making it ideal for small to medium-sized projects

and microservices.

Installing Flask in a Virtual Environment

1. Create a Virtual Environment: python -m venv myenv

2. Activate the Virtual Environment:

For Windows: myenv\Scripts\activate
For Linux:source myenv/bin/activate

3. Install Flask: command is pip install Flask

4. Creating a JSON File with Product List

1. Create a JSON File (e.g., products.json):

[

{
"id": 1,
"name": "Product A",
"price": 29.99

},
{
"id": 2,
"name": "Product B",
"price": 39.99

}
]

Python Code for CRUD Operations with Flask

1. Create a Flask Application (app.py);

from flask import *

import json

app = F↖ask(__name__)

Load initial product data from JSON file

with open('products.json') as f:

products = json.load(f)

@app.route('/products', methods=['GET'])

def get_products():

return jsonify(products)

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

@app.route('/products/<int:id>', methods=['GET'])

def get_product(id):

product = next((prod for prod in products if prod['id'] = id),

None)

if product is None:

return jsonify({'error': 'Product not found'}), 404

return jsonify(product)

@app.route('/products', methods=['POST'])

def add_product():

new_product = request.get_json()

products.append(new_product)

return jsonify(new_product), 201

@app.route('/products/<int:id>', methods=['PUT'])

def update_product(id):

updated_product = request.get_json()

for index, product in enumerate(products):

if product['id'] = id:

products[index] = updated_product

return jsonify(updated_product)

return jsonify({'error': 'Product not found'}), 404

@app.route('/products/<int:id>', methods=['DELETE'])

def delete_product(id):

global products

products = [prod for prod in products if prod['id'] ÷ id]

return jsonify({'message': 'Product deleted'})

How to run this code:

In the Terminal Type the

flask run

Installing an API Client Extension in VS Code

1. Open Visual Studio Code:

○ Launch VS Code on your machine.

2. Open the Extensions View:

○ Click on the Extensions icon in the Activity Bar on the side of the window (it

looks like four squares).

3. Search for an API Client Extension:

○ In the Extensions view, type "API Client" in the search bar.

4. Install the REST Client Extension:

○ Find "REST Client" by Huachao Mao in the list of results.

○ Click the "Install" button next to the extension.

5. Use the REST Client Extension:

○ After installation, you can start using the REST Client to make API requests

directly from VS Code.

Basic Usage of the REST Client Extension

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

1. Create a New File:

○ Open a new file in VS Code (e.g., api.http).

2. Write Your API Requests:

○ In the new file, write your HTTP requests. For example:

Explanation

1. GET /products:

● Returns the entire list of products as a JSON array.

Output:

[
{
"id": 1,
"name": "Product A",
"price": 29.99

},
{
"id": 2,
"name": "Product B",
"price": 39.99

}
]

2. GET /products/2:

● Retrieves a single product by its ID and returns it as JSON; returns a 404 error if the

product is not found

Output:

{
"id": 2,
"name": "Product B",
"price": 39.99

}

3. POST /products:

Request:

{

“Id”:3,

“name”:”Product C”,

“price”:68.47

}

Output:

Response:

Status:201

{

“Id”:3,

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

“name”:”Product C”,

“price”:68.47

}

● Adds a new product to the list and returns the created product with a 201 status

code.

4. PUT /products/2:

Request

{

Id:2,

name:”Product B”,

price:85.23

}

Output

{

Id:2,

name:”Product B”,

price:85.23

}

● Updates an existing product by its ID and returns the updated product; returns a

404 error if the product is not found.

5. DELETE /products/2:

Output:

{

“message”:”Product deleted”}

}

● Deletes a product by its ID and returns a confirmation message.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Chapter-5

Accessing REST API
Accessing a REST API involves interacting with a web-based application interface to

retrieve or manipulate data.

This interaction follows a standardized set of rules (RESTful architecture) to ensure efficient

communication and data exchange. Clients (such as web applications, mobile apps, or other

systems) send requests to the API server, specifying the desired action (e.g., retrieving data,

creating new records, updating existing data, deleting data) and the format of the expected

response. The API server processes the request, performs the requested action, and returns

the appropriate data in a structured format (often JSON or XML). Essentially, it's a method

for applications to communicate and share data over the internet.

FakeStoreAPI: A Playground for Testing and Learning

FakeStoreAPI, hosted at https://fakestoreapi.com/, is a free online service that provides a

RESTful API specifically designed for e-commerce applications.

Here's what makes it special:

● Fake Data: Unlike real APIs, FakeStoreAPI provides simulated (fake) data related to

products, categories, carts, and users. This eliminates the need for a real backend

server and allows developers to test their applications without worrying about actual

data manipulation.

● Easy to Use: The API is straightforward and readily accessible from any programming

language.

● Learning Tool: FakeStoreAPI is fantastic for learning about REST APIs, e-commerce

data structures, and practicing code for fetching and manipulating data.

Understanding the REST API with JSON Format

The API uses JSON (JavaScript Object Notation) to represent data. JSON is a human-readable

format similar to key-value pairs, making it easy to understand and work with.

Here's a breakdown of the FakeStoreAPI's product API and an explanation of a sample JSON

response:

API Endpoint:

● GET https://fakestoreapi.com/products (This retrieves a list of all products)

Sample JSON Response:

[

{

"id": 1,

https://fakestoreapi.com/

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

"title": "Fjallraven - Foldsack No. 2 Backpack",

"price": 109.95,

"description": "Your perfect everyday bag for errands, school, or

travel. This spacious backpack is made from durable, water−resistant

fabric.",

"image": "https: i.imgur.com/uGkQlpv.png",

"category": "fashion"

},

{

"id": 2,

"title": "Leather Jacket",

"price": 299.99,

"description": "This rugged leather jacket is perfect for colder

weather. It's made from high−quality leather and features a classic

design.",

"image": "https: i.imgur.com/zYcA1ln.png",

"category": "men's clothing"

},

]

Explanation of the JSON Data:

● Each product is represented by an object within square brackets ([]).

● Each object has key-value pairs separated by colons (:).

○ id: Unique identifier for the product (number)

○ title: Product name (string)

○ price: Product price (number)

○ description: Description of the product (string)

○ image: URL of the product image (string)

○ category: Category the product belongs to (string)

Additional Points:

● The API offers various endpoints for different functionalities. You can retrieve a

specific product by its ID, get products within a specific category, and even perform

actions like adding or updating products (these functionalities are for demonstration

purposes only; modifying data on FakeStoreAPI isn't permanent).

● Refer to the official documentation at https://fakestoreapi.com/ for a complete list of

endpoints and examples.

By using FakeStoreAPI, you can practice fetching and manipulating data in JSON format,

simulate interactions with a real e-commerce API, and gain valuable experience with RESTful

APIs.

Using the http package in Dart to interact with FakeStoreAPI

The http package in Dart offers a clean and efficient way to make HTTP requests. Let's

explore its methods, use it with FakeStoreAPI, and understand the code step-by-step.

https://fakestoreapi.com/

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

1. Adding the dependency:

First, you need to add the http package to your project. You can achieve this by modifying

your pubspec.yaml file and adding the following line under the dependencies section:

dependencies:

http: ^0.13.4

Then, run flutter pub get to download the package.

2. Importing the library and making a GET request:

Here's the code for making a GET request to retrieve all products from FakeStoreAPI:

import 'package:http/http.dart' as http;

Future<void> main() async {

 Define the API endpoint URL

final url = Uri.parse('https: fakestoreapi.com/products');

 Make the GET request

final response = await http.get(url);

 Check for successful response

if (response.statusCode = 200) {

 Parse the JSON response

final data = jsonDecode(response.body);

 Print the product information

for (var product in data) {

print('Product ID: ${product['id']}, Title: ${product['title']},

Price: ${product['price']}');

}

} else {

print('Failed to fetch products. Status code: ${response.statusCode}');

}

}

Explanation:

1. We import the http package with an alias (as http).

2. Inside the main function, we define the API endpoint URL as a Uri object.

3. We use http.get(url) to make the GET request asynchronously and store the response

in a variable.

4. We check if the response status code is 200 (indicating success).

5. If successful, we use jsonDecode(response.body) to convert the response body

(containing JSON data) into a Dart object.

6. We iterate through the parsed data, which is a list of product objects.

7. For each product, we access its properties (ID, title, price) using their keys (['id'],

['title'], ['price']) and print them.

8. If the request fails, we print an error message along with the status code.

3. Making a POST request:

While FakeStoreAPI doesn't support creating real products, let's see a simplified example of

a POST request:

import 'package:http/http.dart' as http;

Future<void> main() async {

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

final url = Uri.parse('https: your−api−endpoint.com/products');

 Sample product data for the POST request

final productData = {

'title': 'My New Product',

'price': 99.99,

'description': 'This is a new and exciting product!',

'image': 'https: example.com/product−image.jpg',

'category': 'electronics'

};

 Make the POST request with JSON data

final response = await http.post(

url,

headers: {'Content-Type': 'application/json'},

body: jsonEncode(productData),

);

 Check for successful response

if (response.statusCode = 201) {

print('Product created successfully!');

} else {

 print('Failed to create product. Status code: ${response.statusCode}');

}

}

Explanation:

1. Similar to the GET request, we define the API endpoint URL.

2. We define a map containing sample product data to be sent in the request body.

3. We use http.post with additional arguments:

○ headers: This sets the content type to JSON.

○ body: This contains the JSON-encoded product data using

jsonEncode(productData).

4. We check if the response status code is 201 (indicating successful creation).

5. We print appropriate messages based on the response status code.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Chapter-6

Accessing Product Service API with Flutter

FutureBuilder: A Reliable Partner for Asynchronous Data Management in Flutter

In Flutter app development, when dealing with operations that take an unknown amount of

time to complete, like fetching data from remote servers or performing lengthy calculations,

asynchronous programming becomes essential. The FutureBuilder widget acts as a

cornerstone in managing these asynchronous operations, offering a structured approach to

displaying appropriate UI elements as the operation progresses, succeeds, or encounters

errors.

Understanding Snapshots: Timely Updates on Operation Status

FutureBuilder leverages the concept of snapshots, which provide real-time updates on the

asynchronous operation's state. Imagine snapshots as progress reports, similar to how a

delivery service might send you updates like "Order confirmed" or "Out for delivery." In

FutureBuilder, snapshots offer three key pieces of information:

● ConnectionState: This property reflects the current stage of the operation, indicating

whether it's:

○ waiting: The operation hasn't started or is still in progress.

○ done: The operation has successfully completed.

○ active (for some futures): The operation is ongoing and might provide

updates occasionally.

○ error: The operation encountered an unexpected issue.

● data: This property stores the retrieved data upon successful completion (the

product list in our example).

● hasError: This signals if the operation ran into an error, allowing for appropriate error

handling.

Properties of FutureBuilder: Tailoring UI Dynamics

● future (required): This is the core of FutureBuilder. It represents the asynchronous

operation itself. In our example, it will be a function responsible for making the HTTP

GET request using the http package.

● builder (required): This is your UI architect. It's a function that takes a BuildContext

and an AsyncSnapshot as arguments and constructs the UI based on the snapshot's

information. You can use conditional statements to display different UI elements

based on the ConnectionState:

○ A loading indicator while waiting (ConnectionState.waiting).

○ The retrieved data (product list) upon successful completion

(ConnectionState.done).

○ An error message if an error occurred (ConnectionState.error).

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

● initialData (optional): This property allows you to specify an initial value to display

while the asynchronous operation is in progress. This is particularly useful for

preventing your UI from appearing blank during the waiting phase.

HTTP GET Request Example with FutureBuilder: A Comprehensive Illustration

1. Dependencies:

import 'package:flutter/material.dart';

import 'package:http/http.dart' as http; for making HTTP requests

2. Data Model (Product) (Optional):

(Create a file Product.dart)

class Product {

final int id;

final String title;

final String price;

Product({required this.id, required this.title, required this.price});

factory Product.fromJson(Map<String, dynamic> json) {

return Product(

id: json['id'],

title: json['title'],

price: json['price'],

);

}

}

3. Fetching Products with Error Handling:

(Create a function to encapsulate the HTTP GET request, handle the response, and gracefully

manage errors)

Future<List<Product » fetchProducts() async {

final response = await

http.get(Uri.parse('https: fakestoreapi.com/products'));

if (response.statusCode = 200) {

final List<dynamic>

jsonProductList = jsonDecode(response.body);

return jsonProductList.map((productJson) =€

Product.fromJson(productJson)).toList();

} else {

throw Exception('Failed to load products: Status code

${response.statusCode}');

}

}

4. Create an API service class: Create a new file api_service.dart to define the

ApiService class that will fetch the products from the API.

import 'dart:convert';

import 'package:http/http.dart' as http;

import 'product.dart';

class ApiService {

static const String url = 'https: fakestoreapi/products';

Future<List<Product » fetchProducts() async {

final response = await http.get(Uri.parse(url));

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

if (response.statusCode = 200) {

List jsonResponse = json.decode(response.body);

return jsonResponse.map((product) =€

Product.fromJson(product)).toList();

} else {

throw Exception('Failed to load products');

}

}

}

5. Building the UI with FutureBuilder:

Here's how you can construct the UI using FutureBuilder, incorporating professional UI

design conventions and error handling:

import 'package:flutter/material.dart';

import 'api_service.dart';

import 'product.dart';

void main() {

runApp(MyApp());

}

class MyApp extends StatelessWidget {

@override

Widget build(BuildContext context) {

return MaterialApp(

title: 'Product App',

theme: ThemeData(

primarySwatch: Colors.blue,

),

home: ProductListScreen(),

);

}

}

class ProductListScreen extends StatelessWidget {

final ApiService apiService = ApiService();

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text('Products'),

),

body: FutureBuilder<List<Product »(

future: apiService.fetchProducts(),

builder: (context, snapshot) { Output
if (snapshot.connectionState = ConnectionState.waiting) {

return Center(child: CircularProgressIndicator());

} else if (snapshot.hasError) {

return Center(child: Text('Error: ${snapshot.error}'));

} else if (snapshot.hasData) {

return ListView.builder(

itemCount: snapshot.data!.length,

itemBuilder: (context, index) {

final product = snapshot.data![index];

return ListTile(

leading: Image.network(product.image),

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

title: Text(product.title),

subtitle: Text('\$${product.price.toString()}'),

);

},

);

} else {

return Center(child: Text('No products found'));

}

},

),

);

}

}

Explanation

1. Model Class (product.dart):

○ Product class represents the product data structure.

○ Product.fromJson is a factory constructor that creates a Product instance

from a JSON object.

2. API Service (api_service.dart):

○ ApiService class contains the method fetchProducts which performs the HTTP

GET request.

○ fetchProducts method returns a list of Product objects by decoding the JSON

response.

3. Main Application (main.dart):

○ MyApp is the root widget of the application.

○ ProductListScreen is the main screen which displays the list of products.

○ FutureBuilder widget is used to handle the asynchronous fetching of data.

■ future property is assigned to the fetchProducts method.

■ builder property defines the UI based on the state of the Future.

■ When the Future is waiting, a loading indicator is shown.

■ If there is an error, the error message is displayed.

■ If data is successfully fetched, a ListView is built to display the

products.

HTTP POST Request to fakestoreapi.com

Introduction

The HTTP POST method is used to send data to the server to create or update a resource.

For this example, we'll be using fakestoreapi.com, a free online REST API for testing

and prototyping.

Endpoint

To create a new product, the endpoint is:

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

https://fakestoreapi.com/products

Request Body

The data sent in the request body must be in JSON format. Here is an example of the data

we will send:

JSON

{

"title": "Product Title",

"price": 29.99,

"description": "Product Description",

"image": "https: example.com/product−image.jpg",

"category": "Category"

}

Using Dart's HTTP Package

We will use the http package to make HTTP requests in Flutter. Add http to your

pubspec.yaml file:

dependencies:

http: ^0.13.4

Flutter Example: Creating a Product

Step 1: Setting Up the Project

Create a new Flutter project and add the http package as mentioned above.

Step 2: Creating the Form

Create a form with text fields for title, price, description, image URL, and category, and a

button to submit the form using TextField and TextEditingController.

import 'package:flutter/material.dart';

import 'package:http/http.dart' as http;

import 'dart:convert';

void main() =€ runApp(MyApp());

class MyApp extends StatelessWidget {

@override

Widget build(BuildContext context) {

return MaterialApp(

home: CreateProductPage(),

);

}

}

class CreateProductPage extends StatefulWidget {

@override

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

_CreateProductPageState createState() =€ _CreateProductPageState();

}

class _CreateProductPageState extends State<CreateProductPage> {

 Controllers to capture input from text fields

final TextEditingController _titleController = TextEditingController();

final TextEditingController _priceController = TextEditingController();

final TextEditingController _descriptionController =

TextEditingController();

final TextEditingController _imageUrlController =

TextEditingController();

final TextEditingController _categoryController =

TextEditingController();

 Function to submit product data

Future<void> _submitProduct() async {

 API URL

final url = Uri.parse('https: fakestoreapi.com/products');

 Making the POST request

final response = await http.post(

url,

headers: {'Content-Type': 'application/json'},

body: json.encode({

'title': _titleController.text,

'price': double.parse(_priceController.text),

'description': _descriptionController.text,

'image': _imageUrlController.text,

'category': _categoryController.text,

}),

);

 Displaying snackbar based on response

if (response.statusCode = 200) {

ScaffoldMessenger.of(context).showSnackBar(

SnackBar(content: Text('Product created successfully!')),

);

} else {

ScaffoldMessenger.of(context).showSnackBar(

SnackBar(content: Text('Failed to create product.')),

);

}

}

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(title: Text('Create Product')),

body: Padding(

padding: const EdgeInsets.all(16.0),

child: Column(

children: [

TextField(

controller: _titleController,

decoration: InputDecoration(labelText: 'Title'),

),

TextField(

controller: _priceController,

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

decoration: InputDecoration(labelText: 'Price'),

keyboardType: TextInputType.number,

),

TextField(

controller: _descriptionController,

decoration: InputDecoration(labelText: 'Description'),

),

TextField(

controller: _imageUrlController,

decoration: InputDecoration(labelText: 'Image URL'),

),

TextField(

controller: _categoryController,

decoration: InputDecoration(labelText: 'Category'),

),

SizedBox(height: 20),

ElevatedButton(

onPressed: _submitProduct,

child: Text('Submit'),

),

],

),

),

);

}

}

Output:

Explanation

1. Importing Packages:

○ flutter/material.dart: Provides Flutter's material design components.

○ http/http.dart as http: Allows making HTTP requests.

○ dart:convert: Provides utilities to convert Dart objects to JSON and vice versa.

2. Main Function:

○ void main() => runApp(MyApp());: The entry point of the application which

runs MyApp.

3. MyApp StatelessWidget:

○ Returns a MaterialApp with CreateProductPage as the home widget.

4. CreateProductPage StatefulWidget:

○ State Management: Uses _CreateProductPageState to manage the state of

the CreateProductPage.

5. Controllers:

○ TextEditingController: Captures user input from each TextField.

6. _submitProduct Function:

○ Constructs the URL for the API endpoint.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

○ Makes an HTTP POST request to the API with headers specifying JSON

content.

○ Converts the input data to JSON format using json.encode.

○ Sends the data in the request body.

○ Displays a Snackbar with a success or failure message based on the HTTP

response status code.

7. Build Method:

○ Returns a Scaffold with an AppBar and a Padding widget containing a Column

of TextField and ElevatedButton widgets.

○ Each TextField is linked to a corresponding TextEditingController.

○ The ElevatedButton triggers the _submitProduct function when pressed.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Chapter-7

Database Concepts: SQLite and SQLiteDbProvider

What We Will Do

1. Introduction to SQLite: Learn what SQLite is and its key features.

2. Basic SQLite Operations: Understand how to perform CRUD operations.

3. Using SQLite in Flutter: Learn how to use SQLite in a Flutter app with the sqflite

package.

4. SQLiteDbProvider Object: Create a custom class to manage database operations.

5. SQLiteDbProvider Methods: Learn about methods for opening the database,

inserting, querying, updating, and deleting data.

1. Introduction to SQLite

SQLite is a small, fast, self-contained database engine widely used across various platforms.

It doesn't need a separate server to operate and is easy to set up.

Key Features:

● Serverless: Works without a separate server.

● Zero Configuration: No setup needed.

● Transactional: Ensures data consistency.

● Cross-Platform: Runs on different operating systems.

● Lightweight: Small in size and easy to deploy.

2. Basic SQLite Operations

SQLite supports the following basic operations:

● Create: Add new data.

● Read: Retrieve data.

● Update: Modify existing data.

● Delete: Remove data.

3. Using SQLite in Flutter

To use SQLite in a Flutter app, you can use the sqflite package. This package makes it easy

to perform database operations.

Add sqflite to your project: Open the pubspec.yaml file and add the sqflite and path

dependencies.

dependencies:

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

sqflite: ^2.0.0+4
path: ^1.8.0

4. SQLiteDbProvider Object

The SQLiteDbProvider is a custom class that manages database operations like opening the
database, creating tables, and performing CRUD operations. It uses the singleton pattern
to ensure only one instance of the database is used.

Basic Structure of SQLiteDbProvider:

1. Singleton Pattern:

class SQLiteDbProvider {

SQLiteDbProvider._(); Private constructor

static final SQLiteDbProvider db = SQLiteDbProvider._(); Single

instance

}

● This code ensures only one instance of SQLiteDbProvider is created.

2. Database Initialization:

import 'package:sqflite/sqflite.dart';

import 'package:path/path.dart';

import 'package:path_provider/path_provider.dart';

import 'dart:io';

class SQLiteDbProvider {

SQLiteDbProvider._();

static final SQLiteDbProvider db = SQLiteDbProvider._();

Database _database;

Future<Database> get database async {

if (_database ÷ null) return _database; Return existing

database if it exists

_database = await _initDB(); Initialize the database if it

doesn't exist

return _database;

}

Future<Database> _initDB() async {

Directory documentsDirectory = await

getApplicationDocumentsDirectory();

String path = join(documentsDirectory.path, "TestDB.db");

Database file path

return await openDatabase(path, version: 1, onOpen: (db) {},

onCreate: (Database db, int version) async {

await db.execute("CREATE TABLE Test ("

"id INTEGER PRIMARY KEY,"

"name TEXT,"

"value INTEGER,"

"num REAL"

")");

});

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

}

}

● This code initializes the database and creates a table named "Test."

● The get database method ensures only one instance of the database is
created.

● The _initDB method sets up the database file path and creates a table if it
doesn't already exist.

5. SQLiteDbProvider Methods

1. Open Database:

Future<Database> openDB() async {

Directory documentsDirectory = await

getApplicationDocumentsDirectory();

String path = join(documentsDirectory.path, "example.db");

Define the path to the database

return await openDatabase(path, version: 1, onOpen: (db) {});

Open the database

}

● Purpose: Opens the database located at the specified path.

Explanation:

● getApplicationDocumentsDirectory() gets the directory where the app
can store its data.

● join(documentsDirectory.path, "example.db") creates the full path
to the database file.

● openDatabase(path, version: 1, onOpen: (db) {}) opens the
database file, creating it if it doesn't exist.

2. Insert:

Future<int> insert(String table, Map<String, dynamic> values) async {

final db = await database; Get the database instance

return await db.insert(table, values); Insert values into the

specified table }

● Purpose: Inserts new data into the specified table.

Explanation:

● database gets the database instance.

● db.insert(table, values) inserts the values into the specified table.
● This method returns the ID of the inserted row.

3. Query:

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Future<List<Map<String, dynamic € queryAllRows(String table) async {

final db = await database; Get the database instance

return await db.query(table); Retrieve all rows from the

specified table

}

● Purpose: Retrieves all rows from the specified table.

Explanation:

● database gets the database instance.

● db.query(table) retrieves all rows from the table and returns them as a list
of maps (key-value pairs).

4. Update:

Future<int> update(String table, Map<String, dynamic> values, String

whereClause, List<dynamic> whereArgs) async {

final db = await database; Get the database instance

return await db.update(table, values, where: whereClause,

whereArgs: whereArgs); Update rows in the specified table

}

● Purpose: Updates existing data in the specified table.

Explanation:

● database gets the database instance.

● db.update(table, values, where: whereClause, whereArgs:

whereArgs) updates the rows in the table that match the whereClause and

whereArgs.

● This method returns the number of rows affected.

5. Delete:

Future<int> delete(String table, String whereClause, List<dynamic>

whereArgs) async {

final db = await database; Get the database instance

return await db.delete(table, where: whereClause, whereArgs:

whereArgs); Delete rows from the specified table

}

● Purpose: Deletes data from the specified table.

Explanation:

● database gets the database instance.

● db.delete(table, where: whereClause, whereArgs:

whereArgs) deletes the rows in the table that match the whereClause and

whereArgs.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

● This method returns the number of rows deleted.

6. Close Database:

Future<void> closeDB() async {

final db = await database; Get the database instance

db.close(); Close the database connection

}

● Purpose: Closes the database connection.

Explanation:

● database gets the database instance.

● db.close() closes the database connection.

Example Usage:
void main() async {

SQLiteDbProvider databaseProvider = SQLiteDbProvider.db;

 Insert a row

await databaseProvider.insert('Test', {'name': 'Item 1', 'value': 123,

'num': 45.67});

 Query all rows

List<Map<String, dynamic » rows = await

databaseProvider.queryAllRows('Test');

print(rows); Print all rows

 Update a row

await databaseProvider.update('Test', {'value': 456}, 'id = ?', [1]);

 Delete a row

await databaseProvider.delete('Test', 'id = ?', [1]);

}

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

2 Marks Questions

1. What is a Dart package?

Unit-5

Question Bank

2. Mention one benefit of using Dart packages.

3. Where can you find pub packages for Dart?

4. Which file in a Dart project specifies the project dependencies?

5. What command is used to install packages specified in pubspec.yaml?

6. What does a Future represent in Dart?

7. What does the then() method do with a Future?

8. How do you declare an asynchronous function in Dart?

9. How do you handle errors in asynchronous code using Dart?

10. What is the primary function of a web server?

11. Define the term "host" in the context of web services.

12. What does the GET method do in HTTP request methods?

13. What does JSON stand for and what is its primary use?

14. How are JSON objects represented syntactically?

15. What is Flask used for in Python development?

16. How do you install Flask in a virtual environment on Windows?

17. What is the primary purpose of accessing a REST API?

18. Describe the type of data FakeStoreAPI provides and its use case.

19. What is the purpose of the FutureBuilder widget in Flutter?

20. What HTTP method is used to send data to the server to create or update a

resource?

21. How do you handle errors in FutureBuilder when fetching data?

22. What is the role of the initialData property in FutureBuilder?

23. What are the key features of SQLite?

24. What is the purpose of the database getter in the SQLiteDbProvider class?

25. How does the insert method in SQLiteDbProvider work?

26. What does the queryAllRows method in SQLiteDbProvider do?

27. How do you open a database using SQLiteDbProvider?

5 Marks Questions

1. Explain the importance and benefits of using Dart packages.

2. Describe the steps to add a dependency from pub.dev to a Dart project.

3. What is the structure of a Dart package? Explain each component briefly.

4. Outline the process to create and publish a simple Dart package.

5. How can you add and use a custom package in a Flutter project?

6. Explain the purpose of the async and await keywords in Dart.

7. Describe the process of handling errors in asynchronous Dart code.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

8. How do you use the then() method with a Future? Provide an example.

9. Outline the steps to create and use a Future in Dart. Include code examples.

10. Demonstrate how to simulate a network delay using Future.delayed and handle

its result.

11. Describe the key characteristics of RESTful APIs.

12. Explain the structure of JSON and provide an example of a JSON object.

13. Outline the role and functionality of the http package in Dart for making HTTP

requests.

14. How does the fetchData function work in the provided Dart example? Include

details about handling HTTP responses and errors.

15. Discuss the HTTP response components and their significance in web

communication.

16. Describe the steps to set up and run a Flask application, including virtual

environment setup and installation commands.

17. Outline the structure and contents of the products.json file used in the Flask

application. How does it interact with the CRUD operations?

18. Detail the structure of a sample JSON response from the FakeStoreAPI. What

information does each key in the JSON object represent?

19. How does the POST request example handle the creation of a new product? Describe

the process of sending data and checking for a successful response.

20. Explain how FutureBuilder manages asynchronous operations in Flutter.

21. Describe the process of creating a Product class in Flutter and how it is used to

handle JSON data from an API response.

22. Outline the steps to fetch product data from FakeStoreAPI using Flutter's

FutureBuilder. Describe how to handle different states such as loading, error, and

data available.

23. Explain the Singleton pattern used in the SQLiteDbProvider class. How does it ensure

only one instance of the database is used?

24. Describe the process of initializing the database and creating a table using

SQLiteDbProvider. Include details about the _initDB method.

25. Discuss the basic CRUD operations supported by SQLite and provide an example of

how each operation is performed using SQLiteDbProvider methods.

26. Outline the steps to perform a database update using SQLiteDbProvider. Include

details on how to specify the rows to be updated and the values to be changed.

