
MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

UNIT-4

Introduction to gestures and state management:

Gestures are primarily a way for a user to interact with a mobile (or any touch based device)

application. Gestures are generally defined as any physical action / movement of a user in the

intention of activating a specific control of the mobile device. Gestures are as simple as tapping

the screen of the mobile device to more complex actions used in gaming applications.

Tap: It means touching the surface of the screen from the fingertip for a short time and then

releasing them. This gesture contains the following events:

• onTapDown

• onTapUp

• onTap

• onTapCancel

Double Tap: It is similar to a Tap gesture, but you need to tapping twice in a short time. This

gesture contains the following events:

• onDoubleTap

Long Press: It means touching the surface of the screen at a particular location for a long time.

This gesture contains the following events:

• onLongPress

Drag: It allows us to touch the surface of the screen with a fingertip and move it from one

location to another location and then releasing them. Flutter categories the drag into two types:

Horizontal Drag: This gesture allows the pointer to move in a horizontal direction. It contains

the following events:

• onHorizontalDragStart

• onHorizontalDragUpdate

• onHorizontalDragEnd

Vertical Drag: This gesture allows the pointer to move in a vertical direction. It contains the

following events:

• onVerticalDragStart

• onVerticalDragStart

• onVerticalDragStart

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Pan: It means touching the surface of the screen with a fingertip, which can move in any

direction without releasing the fingertip. This gesture contains the following events:

• onPanStart

• onPanUpdate

• onPanEnd

Dialog: The dialog is a type of widget which comes on the window or the screen which

contains any critical information or can ask for any decision. When a dialog box is popped up

all the other functions get disabled until you close the dialog box or provide an answer. We use

a dialog box for a different type of condition such as an alert notification, or simple notification

in which different options are shown, or we can also make a dialog box that can be used as a

tab for showing the dialog box.

Types of dialogs in a flutter

• AlertDialog

• SimpleDialog

• showDialog

AlertDialog

Alert dialog tells the user about any condition that requires any recognition. The alert dialog

contains an optional title and an optional list of actions. We have different no of actions as our

requirements. Sometimes the content is too large compared to the screen size so for resolving

this problem we may have to use the expanded class.

Properties:

• Title: It is always recommended to make our dialog title as short as possible. It will be

easily understandable to the user.

• Action: It is used to show the content for what action has to perform.

• Content: The body of the alertDialog widget is defined by the content.

• Shape: It is used to define the shape of our dialog box whether it is circular, curved,

and many more.

Here is the snippet code for creating a dialog box.

AlertDialog(
title: Text('Welcome'), // To display the title it is optional

content: Text('GeeksforGeeks'), // Message which will be pop up on the screen

// Action widget which will provide the user to acknowledge

the choice

actions: [

FlatButton(// FlatButton widget is used to make a text to work like a

button

https://www.geeksforgeeks.org/expanded-class-in-flutter/

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

textColor: Colors.black,

onPressed: () {}, // function used to perform after pressing the button

child: Text('CANCEL'),

),

FlatButton(

textColor: Colors.black,

onPressed: () {},

child: Text('ACCEPT'),

),

],

),

SimpleDialog

A simple dialog allows the user to choose from different choices. It contains the title which is

optional and presented above the choices. We can show options by using the padding also.

Padding is used to make a widget more flexible.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Properties:

• Title: It is always recommended to make our dialog title as short as possible. It will be

easily understandable to the user.

• Shape: It is used to define the shape of our dialog box whether it is circular, curve, and

many more.

• backgroundcolor: It is used to set the background color of our dialog box.

• TextStyle: It is used to change the style of our text.

SimpleDialog(

title:const Text('GeeksforGeeks'),

children: <Widget>[

SimpleDialogOption(

onPressed: () { },

child:const Text('Option 1'),

),

SimpleDialogOption(

onPressed: () { },

child: const Text('Option 2'),

),

],

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

),

showDialog

It basically used to change the current screen of our app to show the dialog popup. You must

call before the dialog popup. It exits the current animation and presents a new screen

animation. We use this dialog box when we want to show a tab that will popup any type of

dialog box, or we create a front tab to show the background process.

Properties:

• Builder: It returns the child instead of creating a child argument.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

• Barriercolor: It defines the modal barrier color which darkens everything in the dialog.

• useSafeArea: It makes sure that the dialog uses the safe area of the screen only not

overlapping the screen area.

showDialog(

context: context,

builder: (BuildContext context) {

return Expanded(

child: AlertDialog(

title: Text('Welcome'),

content: Text('GeeksforGeeks'),

actions: [

FlatButton(

textColor: Colors.black,

onPressed: () {},

child: Text('CANCEL'),

),

FlatButton(

textColor: Colors.black,

onPressed: () {},

child: Text('ACCEPT'),

),

],

),

);

},

);

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Flutter State Management

In this section, we are going to discuss state management and how we can handle it in the Flutter.

We know that in Flutter, everything is a widget. The widget can be classified into two categories,

one is a Stateless widget, and another is a Stateful widget. The Stateless widget does not have

any internal state. It means once it is built, we cannot change or modify it until they are

initialized again. On the other hand, a Stateful widget is dynamic and has a state. It means we

can modify it easily throughout its lifecycle without reinitialized it again.

What is State?

A state is information that can be read when the widget is built and might change or

modified over a lifetime of the app. If you want to change your widget, you need to update the

state object, which can be done by using the setState() function available for Stateful widgets.

The setState() function allows us to set the properties of the state object that triggers a redraw of

the UI.

The state management is one of the most popular and necessary processes in the lifecycle of an

application. According to official documentation, Flutter is declarative. It means Flutter builds its

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

UI by reflecting the current state of your app. The following figure explains it more clearly

where you can build a UI from the application state.

Let us take a simple example to understand the concept of state management. Suppose you have

created a list of customers or products in your app. Now, assume you have added a new customer

or product dynamically in that list. Then, there is a need to refresh the list to view the newly

added item into the record. Thus, whenever you add a new item, you need to refresh the list. This

type of programming requires state management to handle such a situation to improve

performance. It is because every time you make a change or update the same, the state gets

refreshed.

In Flutter, the state management categorizes into two conceptual types, which are given below:

• Ephemeral State

• App State

Ephemeral State

This state is also known as UI State or local state. It is a type of state which is related to

the specific widget, or you can say that it is a state that contains in a single widget. In this kind

of state, you do not need to use state management techniques. The common example of this state

is Text Field.

Example

class MyHomepage extends StatefulWidget {

@override

MyHomepageState createState() => MyHomepageState();

}

class MyHomepageState extends State<MyHomepage> {

String _name = "Peter";

@override

Widget build(BuildContext context) {

https://www.javatpoint.com/flutter

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

return RaisedButton(

child: Text(_name),

onPressed: () {

setState(() {

_name = _name == "Peter" ? "John" : "Peter";

});

},

);

}

}

In the above example, the _name is an ephemeral state. Here, only the setState() function inside

the StatefulWidget's class can access the _name. The build method calls a setState() function,

which does the modification in the state variables. When this method is executed, the widget

object is replaced with the new one, which gives the modified variable value.

App State

It is different from the ephemeral state. It is a type of state that we want to share across various

parts of our app and want to keep between user sessions. Thus, this type of state can be used

globally. Sometimes it is also known as application state or shared state. Some of the examples

of this state are User preferences, Login info, notifications in a social networking app, the

shopping cart in an e-commerce app, read/unread state of articles in a news app, etc.

The following diagram explains the difference between the ephemeral state and the app state

more appropriately.

The simplest example of app state management can be learned by using the provider

package. The state management with the provider is easy to understand and requires less coding.

A provider is a third-party library. Here, we need to understand three main concepts to use this

library.

• ChangeNotifier

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

• ChangeNotifierProvider

• Consumer

Flutter Navigation and Routing

Navigation and routing are some of the core concepts of all mobile application, which allows the

user to move between different pages. We know that every mobile application contains several

screens for displaying different types of information. For example, an app can have a screen that

contains various products. When the user taps on that product, immediately it will display

detailed information about that product.

In Flutter, the screens and pages are known as routes, and these routes are just a widget. In

Android, a route is similar to an Activity, whereas, in iOS, it is equivalent to a ViewController.

In any mobile app, navigating to different pages defines the workflow of the application, and the

way to handle the navigation is known as routing. Flutter provides a basic routing

class MaterialPageRoute and two methods Navigator.push() and Navigator.pop() that shows

how to navigate between two routes. The following steps are required to start navigation in your

application.

Step 1: First, you need to create two routes.

Step 2: Then, navigate to one route from another route by using the Navigator.push() method.

Step 3: Finally, navigate to the first route by using the Navigator.pop() method.

Let us take a simple example to understand the navigation between two routes:

Create two routes

Here, we are going to create two routes for navigation. In both routes, we have created only

a single button. When we tap the button on the first page, it will navigate to the second page.

Again, when we tap the button on the second page, it will return to the first page. The below

code snippet creates two routes in the Flutter application.

class FirstRoute extends StatelessWidget {

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text('First Route'),

),

body: Center(

child: RaisedButton(

child: Text('Open route'),

onPressed: () {

// Navigate to second route when tapped.

},

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

),

),

);

}

}

class SecondRoute extends StatelessWidget {

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text("Second Route"),

),

body: Center(

child: RaisedButton(

onPressed: () {

// Navigate back to first route when tapped.

},

child: Text('Go back!'),

),

),

);

}

}

Navigate to the second route using Navigator.push() method

The Navigator.push() method is used to navigate/switch to a new route/page/screen. Here,

the push() method adds a page/route on the stack and then manage it by using

the Navigator. Again we use MaterialPageRoute class that allows transition between the routes

using a platform-specific animation. The below code explain the use of the Navigator.push()

method.

// Within the `FirstRoute` widget

onPressed: () {

Navigator.push(

context,

MaterialPageRoute(builder: (context) => SecondRoute()),

);

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

}

Return to the first route using Navigator.pop() method

Now, we need to use Navigator.pop() method to close the second route and return to the first

route. The pop() method allows us to remove the current route from the stack, which is managed

by the Navigator.

To implement a return to the original route, we need to update the onPressed() callback method

in the SecondRoute widget as below code snippet:

// Within the SecondRoute widget

onPressed: () {

Navigator.pop(context);

}

Now, let us see the full code to implement the navigation between two routes. First, create a

Flutter project and insert the following code in the main.dart file.

import 'package:flutter/material.dart';

void main() {

runApp(MaterialApp(

title: 'Flutter Navigation',

theme: ThemeData(

// This is the theme of your application.

primarySwatch: Colors.green,

),

home: FirstRoute(),

));

}

class FirstRoute extends StatelessWidget {

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text('First Screen'),

),

body: Center(

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

child: RaisedButton(

child: Text('Click Here'),

color: Colors.orangeAccent,

onPressed: () {

Navigator.push(

context,

MaterialPageRoute(builder: (context) => SecondRoute()),

);

},

),

),

);

}

}

class SecondRoute extends StatelessWidget {

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text("Second Screen"),

),

body: Center(

child: RaisedButton(

color: Colors.blueGrey,

onPressed: () {

Navigator.pop(context);

},

child: Text('Go back'),

),

),

);

}

}

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Output

When you run the project in the Android Studio, you will get the following screen in your

emulator. It is the first screen that contains only a single button.

Click the button Click Here, and you will navigate to a second screen as below image. Next,

when you click on the button Go Back, you will return to the first page.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Statefulwidget widgets

Statefulwidget provides an option for a widget to create a state, State (where T is the inherited

widget) when the widget is created for the first time through createState method and then a

method, setState to change the state whenever needed. The state change will be done through

gestures.

input:

A TextField or TextBox is an input element which holds the alphanumeric data, such as name,

password, address, etc. It is a GUI control element that enables the user to enter text information

using a programmable code. It can be of a single-line text field (when only one line of

information is required) or multiple-line text field (when more than one line of information is

required).

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

TextField in Flutter is the most commonly used text input widget that allows users to collect

inputs from the keyboard into an app. We can use the TextField widget in building forms,

sending messages, creating search experiences, and many more. By default, Flutter decorated the

TextField with an underline. We can also add several attributes with TextField, such as label,

icon, inline hint text, and error text using an InputDecoration as the decoration. If we want to

remove the decoration properties entirely, it is required to set the decoration to null.

The following code explains a demo example of TextFiled widget in Flutter:

We are going to see how to use TextField widget in the Flutter app through the following steps:

Step 1: Create a Flutter project in the IDE you used. Here, I am going to use Android Studio.

Step 2: Open the project in Android Studio and navigate to the lib folder. In this folder, open the

main.dart file and import the material.dart package as given below:

import 'package:flutter/material.dart';

Step 3: Next, call the main MyApp class using void main run app function and then create your

main widget class named as MyApp extends with StatefulWidget:

void main() => runApp(MyApp());

class MyApp extends StatefulWidget { }

Step 4: Next, we need to create the Scaffold widget -> Column widget in the class widget build

area as given below:

class MyApp extends StatefulWidget {

@override

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

title: Text('Flutter TextField Example'),

),

body: Padding(

padding: EdgeInsets.all(15),

child: Column(

children: <Widget> [

]

)

)

)

);

}

}

Step 5: Finally, create the TextField widget as the below code.

child: TextField(

obscureText: true,

decoration: InputDecoration(

border: OutlineInputBorder(),

labelText: 'Password',

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

hintText: 'Enter Password',

),

),

Let us see the complete source code that contains the TextField Widget. This Flutter application

takes two TextFields and one RaisedButton. After filling the details, the user clicks on the button.

Since we have not specified any value in the onPressed () property of the button, it cannot print

them to console.

Replace the following code in the main.dart file and see the output.

import 'package:flutter/material.dart';

void main() {

runApp(MaterialApp(home: MyApp(),));

}

class MyApp extends StatefulWidget {

@override

_State createState() => _State();

}

class _State extends State<MyApp> {

@override

Widget build(BuildContext context) {

return Scaffold(

appBar: AppBar(

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

title: Text('Flutter TextField Example'),

),

body: Padding(

padding: EdgeInsets.all(15),

child: Column(

children: <Widget>[

Padding(

padding: EdgeInsets.all(15),

child: TextField(

decoration: InputDecoration(

border: OutlineInputBorder(),

labelText: 'User Name',

hintText: 'Enter Your Name',

),

),

),

Padding(

padding: EdgeInsets.all(15),

child: TextField(

obscureText: true,

decoration: InputDecoration(

border: OutlineInputBorder(),

labelText: 'Password',

hintText: 'Enter Password',

),

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

),

),

RaisedButton(

textColor: Colors.white,

color: Colors.blue,

child: Text('Sign In'),

onPressed: (){},

)

],

)

)

);

}

}

Output

When we run the application in android emulator, we should get UI similar to the following

screenshot:

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Flutter Checkbox

A checkbox is a type of input component which holds the Boolean value. It is a GUI element that

allows the user to choose multiple options from several selections. Here, a user can answer only

in yes or no value. A marked/checked checkbox means yes, and an unmarked/unchecked

checkbox means no value. Typically, we can see the checkboxes on the screen as a square box

with white space or a tick mark. A label or caption corresponding to each checkbox described the

meaning of the checkboxes.

In this article, we are going to learn how to use checkboxes in Flutter. In Flutter, we can have

two types of checkboxes: a compact version of the Checkbox named "checkbox" and the

"CheckboxListTile" checkbox, which comes with header and subtitle. The detailed descriptions

of these checkboxes are given below:

Checkbox:

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Attributes Descriptions

value It is used whether the checkbox is checked or not.

onChanged It will be called when the value is changed.

Tristate It is false, by default. Its value can also be true, false, or null.

activeColor It specified the color of the selected checkbox.

checkColor It specified the color of the check icon when they are selected.

materialTapTargetSize It is used to configure the size of the tap target.

Example:

Below is the demo example of CheckboxListTitle:

CheckboxListTile(

secondary: const Icon(Icons.abc),

title: const Text('demo mode'),

subtitle: Text('sub demo mode'),

value: this.subvalue,

onChanged: (bool value) {

setState(() {

this.subvalue = value;

});

},

),

Let us write the complete code to see how CheckboxListTitle is displayed in Flutter. First, create

a project in android studio, open the main.dart file, and replace the code given below:

import 'package:flutter/material.dart';

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

void main() {

runApp(MaterialApp(home: MyHomePage(),));

}

class MyHomePage extends StatefulWidget {

@override

_HomePageState createState() => _HomePageState();

}

class _HomePageState extends State<MyHomePage> {

bool valuefirst = false;

bool valuesecond = false;

@override

Widget build(BuildContext context) {

return MaterialApp(

home: Scaffold(

appBar: AppBar(title: Text('Flutter Checkbox Example'),),

body: Container(

padding: new EdgeInsets.all(22.0),

child: Column(

children: <Widget>[

SizedBox(width: 10,),

Text('Checkbox with Header and Subtitle',style: TextStyle(fontSize: 20.0),),

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

CheckboxListTile(

secondary: const Icon(Icons.alarm),

title: const Text('Ringing at 4:30 AM every day'),

subtitle: Text('Ringing after 12 hours'),

value: this.valuefirst,

onChanged: (bool value) {

setState(() {

this.valuefirst = value;

});

},

),

CheckboxListTile(

controlAffinity: ListTileControlAffinity.trailing,

secondary: const Icon(Icons.alarm),

title: const Text('Ringing at 5:00 AM every day'),

subtitle: Text('Ringing after 12 hours'),

value: this.valuesecond,

onChanged: (bool value) {

setState(() {

this.valuesecond = value;

});

},

),

],

)

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

),

),

);

}

}

Output

Now execute the app in the emulator or device, we will get the following screen:

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Flutter Radio Button

A radio button is also known as the options button which holds the Boolean value. It allows the

user to choose only one option from a predefined set of options. This feature makes it different

from a checkbox where we can select more than one option and the unselected state to be

restored. We can arrange the radio button in a group of two or more and displayed on the screen

as circular holes with white space (for unselected) or a dot (for selected). We can also provide a

label for each corresponding radio button describing the choice that the radio button represents.

A radio button can be selected by clicking the mouse on the circular hole or using a keyboard

shortcut.

In this section, we are going to explain how to use radio buttons in Flutter. Flutter allows us to

use radio buttons with the help of 'Radio', 'RadioListTile', or 'ListTitle' Widgets.

The flutter radio button does not maintain any state itself. When we select any radio option, it

invokes the onChanged callback and passing the value as a parameter. If the value and

groupValue match, the radio option will be selected.

Let us see how we can create radio buttons in the Flutter app through the following sts:

Step 1: Create a Flutter project in the IDE. Here, I am going to use Android Studio.

Step 2: Open the project in Android Studio and navigate to the lib folder. In this folder, open the

main.dart file and create a RadioButtonWidget class (Here: MyStatefulWidget). Next, we will

create the Column widget and put three RadioListTile components. Also, we will create a Text

widget for displaying the selected item. The ListTitle contains the following properties:

groupValue: It is used to specify the currently selected item for the radio button group.

title: It is used to specify the radio button label.

value: It specifies the backhand value, which is represented by a radio button.

onChanged: It will be called whenever the user selects the radio button.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

ListTile(

title: const Text('www.javatpoint.com'),

leading: Radio(

value: BestTutorSite.javatpoint,

groupValue: _site,

onChanged: (BestTutorSite value) {

setState(() {

_site = value;

});

},

),

),

Let us see the complete code of the above steps. Open the main.dart file and replace the

following code.

Here, the Radio widgets wrapped in ListTiles and the currently selected text is passed into

groupValue and maintained by the example's State. Here, the first Radio button will be selected

off because _site is initialized to BestTutorSite.javatpoint. If the second radio button is pressed,

the example's State is updated with setState, updating _site to BestTutorSite.w3schools. It

rebuilds the button with the updated groupValue, and therefore it will select the second button.

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

/// This Widget is the main application widget.

class MyApp extends StatelessWidget {

static const String _title = 'Radio Button Example';

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

@override

Widget build(BuildContext context) {

return MaterialApp(

title: _title,

home: Scaffold(

appBar: AppBar(title: const Text(_title)),

body: Center(

child: MyStatefulWidget(),

),

),

);

}

}

enum BestTutorSite { javatpoint, w3schools, tutorialandexample }

class MyStatefulWidget extends StatefulWidget {

MyStatefulWidget({Key key}) : super(key: key);

@override

_MyStatefulWidgetState createState() => _MyStatefulWidgetState();

}

class _MyStatefulWidgetState extends State<MyStatefulWidget> {

BestTutorSite _site = BestTutorSite.javatpoint;

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Widget build(BuildContext context) {

return Column(

children: <Widget>[

ListTile(

title: const Text('www.javatpoint.com'),

leading: Radio(

value: BestTutorSite.javatpoint,

groupValue: _site,

onChanged: (BestTutorSite value) {

setState(() {

_site = value;

});

},

),

),

ListTile(

title: const Text('www.w3school.com'),

leading: Radio(

value: BestTutorSite.w3schools,

groupValue: _site,

onChanged: (BestTutorSite value) {

setState(() {

_site = value;

});

},

),

),

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

ListTile(

title: const Text('www.tutorialandexample.com'),

leading: Radio(

value: BestTutorSite.tutorialandexample,

groupValue: _site,

onChanged: (BestTutorSite value) {

setState(() {

_site = value;

});

},

),

),

],

);

}

}

Output

When we run the app, the following output appears. Here, we have three radio buttons, and only

one is selected by default. We can also select any other option.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Date:

dates in Flutter according to the requirements is very limited and restrictive. While dealing with

dates it should be in human-readable format but unfortunately, there’s no way of formatting dates

in flutter unless you make use of a third-party package.

we will look into one such package known as the intl package.

Using intl package:

Add the following dependencies to your pubspec.yaml file, you can find the latest dependencies

here.

dependencies:

intl: ^0.17.0

Add using terminal:

You can also get the latest intl library using terminal easily:

flutter pub add intl

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

Import it:

That’s it now import intl package in your Dart code:

import 'package:intl/intl.dart';

Still, if you face any error using intl, simply use the following command:

flutter pub get

Now let’s take a look at the below example.

Example:

In the below code we will not be using the intl package for formatting. Also, take a look at the

output of the below code.

import 'package:flutter/material.dart';

void main() {

runApp(dateDemo());

}

class dateDemo extends StatelessWidget {

@override

Widget build(BuildContext context) {

return MaterialApp(

// browser tab title

title: "Geeksforgeeks",

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

// Body

home: Scaffold(

// AppBar

appBar: AppBar(

// AppBar color

backgroundColor: Colors.green.shade900,

// AppBar title

title: Text("Geeksforgeeks"),

),

// Container or Wrapper

body: Container(

margin: EdgeInsets.fromLTRB(95, 80, 0, 0),

// printing text on screen

child: Text(

// Formatted Date

// Builtin format / without formatting

DateTime.now().toString(),

style: TextStyle(

// Styling text

fontWeight: FontWeight.bold, fontSize: 30),

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

),

)),

);

}

}

Output:

List view;

List view is the most commonly used scrolling widget. It displays its children one after another

in the scroll direction. In the cross axis, the children are required to fill the ListView.

If non-null, the itemExtent forces the children to have the given extent in the scroll direction.

If non-null, the prototypeItem forces the children to have the same extent as the given widget in

the scroll direction.

Specifying an itemExtent or an prototypeItem is more efficient than letting the children

determine their own extent because the scrolling machinery can make use of the foreknowledge

of the children's extent to save work, for example when the scroll position changes drastically.

You can't specify both itemExtent and prototypeItem, only one or none of them.

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

There are four options for constructing a ListView:

1. The default constructor takes an explicit List<Widget> of children. This constructor is

appropriate for list views with a small number of children because constructing the List requires

doing work for every child that could possibly be displayed in the list view instead of just those

children that are actually visible.

2. The ListView.builder constructor takes an IndexedWidgetBuilder, which builds the children on

demand. This constructor is appropriate for list views with a large (or infinite) number of

children because the builder is called only for those children that are actually visible.

3. The ListView.separated constructor takes two IndexedWidgetBuilders: itemBuilder builds

child items on demand, and separatorBuilder similarly builds separator children which appear in

between the child items. This constructor is appropriate for list views with a fixed number of

children.

4. The ListView.custom constructor takes a SliverChildDelegate, which provides the ability to

customize additional aspects of the child model. For example, a SliverChildDelegate can control

the algorithm used to estimate the size of children that are not actually visible.

To control the initial scroll offset of the scroll view, provide a controller with its

ScrollController.initialScrollOffset property set.

By default, ListView will automatically pad the list's scrollable extremities to avoid partial

obstructions indicated by MediaQuery's padding. To avoid this behavior, override with a zero

padding property.

This example uses the default constructor for ListView which takes an explicit List<Widget> of

children. This ListView's children are made up of Containers with Text.

A ListView of 3 amber colored containers with sample text.

link

content_copy

ListView(

padding: const EdgeInsets.all(8),

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

children: <Widget>[

Container(

height: 50,

color: Colors.amber[600],

child: const Center(child: Text('Entry A')),

),

Container(

height: 50,

color: Colors.amber[500],

child: const Center(child: Text('Entry B')),

),

Container(

height: 50,

color: Colors.amber[100],

child: const Center(child: Text('Entry C')),

),

],

)

Output

MOBILE APPLICATION DEVELOPMENT

www.ourcreativeinfo.in

