
MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

Widgets 

🞄 Flutter is Google’s UI toolkit for crafting beautiful, natively compiled iOS and Android apps 

from a single code base. 

🞄 To build any application we start with widgets – The building block of flutter applications. 

🞄 Widgets describe what their view should look like given their current configuration and state. It 

includes a text widget, row widget, column widget, container widget, and many more. 

🞄 Widgets: Each element on a screen of the Flutter app is a widget. The view of the screen 

completely depends upon the choice and sequence of the widgets used to build the apps. And 

the structure of the code of an apps is a tree of widgets 

🞄 Widgets are building blocks which the developer, will compose together to make a UI. When 

learning Flutter, we will hear the phrase "everything is a widget" quite often. 

🞄 Every object in your Flutter application's UI is a widget. Structure is defined with widgets, 

styles are defined with widgets, even animations and routing is handled by widgets. And, 

widgets are just Dart classes that know how to describe their view 

visual representation of the widget tree 
 

 

 

 

Types of Widgets 

🞄 Types of Widget We can split the Flutter widget into two categories: 

🞄 Visible (Output and Input) 

🞄 Invisible (Layout and Control) 

Visible widget 



MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

The visible widgets are related to the user input and output data. Some of the important types of 

this widget are: 

🞄 Text 

🞄 Button 

🞄 Image 

🞄 Icon 

Invisible widget 

The invisible widgets are related to the layout and control of widgets. It provides controlling how 

the widgets actually behave and how they will look onto the screen. Some of the important types 

of these widgets are: 

🞄 Column 

🞄 Row 

🞄 Center 

🞄 Padding 

🞄 Scaffold 

🞄 Stack 

 
Widget Build Visualization 
In Flutter, widgets can be grouped into multiple categories based on their features, as listed below 

🞄 Platform specific widgets 

🞄 Layout widgets 

🞄 State maintenance widgets 

🞄 Platform independent / basic widgets 

Platform specific widgets 
🞄 Flutter has widgets specific to a particular platform - Android or iOS. 

🞄 Android specific widgets are designed in accordance with Material design guideline by 

Android OS. Android specific widgets are called as Material widgets. 

🞄 iOS specific widgets are designed in accordance with Human Interface Guidelines by 

Apple and they are called as Cupertino widgets. 

 
Some of the most used material widgets are → 

🞄 Scaffold 

🞄 AppBar 

🞄 BottomNavigationBar 

🞄 TabBar 

🞄 TabBarView 

🞄 ListTile 

🞄 RaisedButton 

🞄 FloatingActionButton 

🞄 FlatButton 

🞄 IconButton 

🞄 DropdownButton 

🞄 PopupMenuButton 

🞄 ButtonBar 

🞄 TextField 

🞄 Checkbox 

🞄 Radio 

🞄 Switch 

🞄 Slider 

🞄 Date & Time Pickers 

🞄 SimpleDialog 

🞄 AlertDialog 



MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

Some of the most used Cupertino widgets are 
 

🞄 CupertinoButton 

🞄 CupertinoPicker 

🞄 CupertinoDatePicker 

🞄 CupertinoTimerPicker 

🞄 CupertinoNavigationBar 

🞄 CupertinoTabBar 

🞄 CupertinoTabScaffold 

🞄 CupertinoTabView 

🞄 CupertinoTextField 

🞄 CupertinoDialog 

🞄 CupertinoDialogAction 

🞄 CupertinoFullscreenDialogTransition 

🞄 CupertinoPageScaffold 

🞄 CupertinoPageTransition 

🞄 CupertinoActionSheet 

🞄 CupertinoActivityIndicator 

🞄 CupertinoAlertDialog 

🞄 CupertinoPopupSurface 

🞄 CupertinoSlider 

 
Layout widgets 

In Flutter, a widget can be created by composing one or more widgets. To compose multiple 

widgets into a single widget, Flutter provides large number of widgets with layout feature. For 

example, the child widget can be centered using Center widget. 

Some of the popular layout widgets are as follows − 

🞄 Container − A rectangular box decorated using BoxDecoration widgets with background, 

border and shadow. 

🞄 Center − Center its child widget. 

🞄 Row − Arrange its children in the horizontal direction. 

🞄 Column − Arrange its children in the vertical direction. 

🞄 Stack − Arrange one above the another. 

State maintenance widgets 

🞄 In Flutter, all widgets are either derived from StatelessWidget or StatefulWidget. 

🞄 Widget derived from StatelessWidget does not have any state information but it may 

contain widget derived from StatefulWidget. 

🞄 The dynamic nature of the application is through interactive behavior of the widgets and 

the state changes during interaction. 

🞄 For example, tapping a counter button will increase / decrease the internal state of the 

counter by one and reactive nature of the Flutter widget will auto re-render the widget 

using new state information. 

Platform independent / basic widgets 

🞄 Flutter provides large number of basic widgets to create simple as well as complex user 

interface in a platform independent manner. 



MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

🞄 some of the basic widgets 

🞄 Text 

🞄 Image 

🞄 Icon 

Text 

🞄 Text widget is used to display a piece of string. The style of the string can be set by using 

style property and TextStyle class. The sample code for this purpose is as follows − 

Text('Hello World!', style: TextStyle(fontWeight: FontWeight.bold)) 

🞄 Text widget has a special constructor, Text.rich, which accepts the child of type TextSpan 

to specify the string with different style. TextSpan widget is recursive in nature and it 

accepts TextSpan as its children. 

The most important properties of the Text widget are as follows − 

🞄 maxLines, int − Maximum number of lines to show 

🞄 overflow, TextOverFlow − Specify how visual overflow is handled using TextOverFlow 

class 

🞄 style, TextStyle − Specify the style of the string using TextStyle class 

🞄 textAlign, TextAlign − Alignment of the text like right, left, justify, etc., using TextAlign 

class 

🞄 textDirection, TextDirection − Direction of text to flow, either left-to-right or right-to-left 

Image 

🞄 Image widget is used to display an image in the application. Image widget provides 

different constructors to load images from multiple sources and they are as follows − 

🞄 Image − Generic image loader using ImageProvider 

🞄 Image.asset − Load image from flutter project’s assets 

🞄 Image.file − Load image from system folder 

🞄 Image.memory − Load image from memory 

🞄 Image.Network − Load image from network 

The easiest option to load and display an image in Flutter is by including the image as assets of the 

application and load it into the widget on demand 

The most important properties of the Image widget are as follows − 

🞄 image, ImageProvider − Actual image to load 

🞄 width, double − Width of the image 

🞄 height, double − Height of the image 

🞄 alignment, AlignmentGeometry − How to align the image within its bounds 



MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

Icon 

🞄 Icon widget is used to display a glyph from a font described in IconData class. The code to 

load a simple email icon is as follows − 

🞄 Icon(Icons.email) 

 
Introduction to Layouts 

🞄 The core concept of Flutter is widget, Flutter incorporates a user interface layout 

functionality into the widgets itself. Flutter provides quite a lot of specially designed 

widgets like Container, Center, Align, etc., only for the purpose of laying out the user 

interface. 
 

🞄 Widgets build by composing other widgets normally use layout widgets 

Flutter allows us to create a layout by composing multiple widgets to build more complex 

widgets. For example, we can see the below image that shows three icons with a label under 

each one 

In the second image, we can see the visual layout of the above image. This image shows a row of 

three columns, and these columns contain an icon and label. 
 



MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

 

 

 

 

 

Type of Layout Widgets 

🞄 Layout widgets can be grouped into two distinct category based on its child − 

🞄 Widget supporting a single child 

🞄 Widget supporting multiple child 

Widget supporting a single child 

🞄 The single child layout widget is a type of widget, which can have only one child widget 

inside the parent layout widget. These widgets can also contain special layout functionality. 

🞄 Flutter provides us many single child widgets to make the app UI attractive. If we use these 

widgets appropriately, it can save our time and makes the app code more readable. The list 

of different types of single child widgets are: 

🞄 For example, Center widget just centers it child widget with respect to its parent widget 

and Container widget provides complete flexibility to place it child at any given place inside 

it using different option like padding, decoration, etc. 

🞄 Single child widgets are great options to create high quality widget having single 

functionality such as button, label, etc 

🞄 Most important single child layout widgets provided by Flutter − 

🞄 Padding − Used to arrange its child widget by the given padding. Here, padding can be 

provided by EdgeInsets class. 

🞄 Align − Align its child widget within itself using the value of alignment property. The value 

for alignment property can be provided by FractionalOffset class. The FractionalOffset class 

specifies the offsets in terms of a distance from the top left. 

🞄 Some of the possible values of offsets are as follows − 

🞄 FractionalOffset(1.0, 0.0) represents the top right. 

🞄 FractionalOffset(0.0, 1.0) represents the bottom left. 

🞄 FittedBox − It scales the child widget and then positions it according to the specified fit. 

🞄 AspectRatio − It attempts to size the child widget to the specified aspect ratio 

basic layout widgets as specified below − 

🞄 Container − Generic, single child, box based container widget with alignment, padding, 

border and margin along with rich styling features. 

🞄 Center − Simple, Single child container widget, which centers its child widget 

Multiple Child Widgets 



MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

🞄 In this category, a given widget will have more than one child widgets and the layout of 

each widget is unique. 

🞄 For example, Row widget allows the laying out of its children in horizontal direction, 

whereas Column widget allows laying out of its children in vertical direction. By 

composing Row and Column, widget with any level of complexity can be built. 

🞄 Let us learn some of the frequently used widgets in this section. 

🞄 Row − Allows to arrange its children in a horizontal manner. 

🞄 Column − Allows to arrange its children in a vertical manner. 

🞄 ListView − Allows to arrange its children as list. 

🞄 GridView − Allows to arrange its children as gallery. 

🞄 Expanded − Used to make the children of Row and Column widget to occupy the 

maximum possible area. 

🞄 Table − Table based widget. 

🞄 Flow − Flow based widget. 

🞄 Stack − Stack based widget. 

Introduction to Gestures 

🞄 Gestures are an interesting feature in Flutter that allows us to interact with the mobile app 

(or any touch-based device). Generally, gestures define any physical action or movement 

of a user in the intention of specific control of the mobile device. 

🞄 Gestures are as simple as tapping the screen of the mobile device to more complex actions 

used in gaming applications. 

Some of the widely used gestures are mentioned here − 

🞄 Tap − Touching the surface of the device with fingertip for a short period and then 

releasing the fingertip. 

🞄 Double Tap − Tapping twice in a short time. 

🞄 Drag − Touching the surface of the device with fingertip and then moving the fingertip 

in a steady manner and then finally releasing the fingertip. 

🞄 Flick − Similar to dragging, but doing it in a speeder way. 

🞄 Pinch − Pinching the surface of the device using two fingers. 

🞄 Spread/Zoom − Opposite of pinching. 

🞄 Panning − Touching the surface of the device with fingertip and moving it in any 

direction without releasing the fingertip. 



MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

🞄 Flutter provides an excellent support for all type of gestures through its exclusive widget, 

GestureDetector. GestureDetector is a non-visual widget primarily used for detecting the 

user’s gesture. 

🞄 To identify a gesture targeted on a widget, the widget can be placed inside GestureDetector 

widget. GestureDetector will capture the gesture and dispatch multiple events based on the 

gesture 

Some of the gestures and the corresponding events 
 

🞄 Tap 

🞄 onTapDown 

🞄 onTapUp 

🞄 onTap 

🞄 onTapCancel 

🞄 Double tap 

🞄 onDoubleTap 

 
🞄 Vertical drag 

🞄 onVerticalDragStart 

🞄 onVerticalDragUpdate 

🞄 onVerticalDragEnd 

🞄 Horizontal drag 

🞄 onHorizontalDragStart 

🞄 onHorizontalDragUpdate 

🞄 onHorizontalDragEnd 

🞄 Pan 

🞄 onPanStart 

🞄 onPanUpdate 

🞄 onPanEnd 

🞄 Long press 

🞄 onLongPress 

 
Flutter also provides a low-level gesture detection mechanism through Listener widget. It will 

detect all user interactions and then dispatches the following events − 

🞄 PointerDownEvent 

🞄 PointerMoveEvent 

🞄 PointerUpEvent 

🞄 PointerCancelEvent 

Flutter also provides a small set of widgets to do specific as well as advanced gestures. The 

widgets are listed below − 

🞄 Dismissible − Supports flick gesture to dismiss the widget. 

🞄 Draggable − Supports drag gesture to move the widget. 

🞄 LongPressDraggable − Supports drag gesture to move a widget, when its parent widget is 

also draggable. 

🞄 DragTarget − Accepts any Draggable widget 

🞄 IgnorePointer − Hides the widget and its children from the gesture detection process. 

🞄 AbsorbPointer − Stops the gesture detection process itself and so any overlapping widget 

also can not able to participate in the gesture detection process and hence, no event is 

raised. 

Scrollable − Support scrolling of the content available inside the widget 

 

MaterialApp 
What is MaterialApp? 

🞄 At its core, MaterialApp is a container for your entire Flutter app. It sets up the app’s main 

structure and provides essential features and services. Think of it as the foundation upon 

which you build your app’s UI and functionality. 



MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

🞄 The MaterialApp widget provides a wrapper around other Material Widgets. We can 

access all the other components and widgets provided by Flutter SDK. 

🞄 Text wedget, DropdownButton widget, AppBar widget, Scaffold widget, 

ListView widget, StatelessWidget, StatefulWidget, IconButton widget, TextField widget, 

Padding widget, ThemeData widget, etc. are the widgets that can be accessed using 

MaterialApp class 

 

Scaffold 
🞄 Scaffold is a class in flutter which provides many widgets or we can say APIs like Drawer, 

Snack-Bar, Bottom-Navigation-Bar, Floating-Action-Button, App-Bar, etc. Scaffold will 

expand or occupy the whole device screen. It will occupy the available space. Scaffold will 

provide a framework to implement the basic material design layout of the application. 

Properties of Scaffold Class: 

🞄 app-Bar: It displays a horizontal bar which mainly placed at the top of 

the Scaffold. appBar uses the widget AppBar which has its own properties like elevation, 

title, brightness, etc 

🞄 body: It will display the main or primary content in the Scaffold. It is below 

the appBar and under the floatingActionButton. The widgets inside the body are at the left- 

corner by default. 

🞄 floatingActionButton: FloatingActionButton is a button that is placed at the right bottom 

corner by default. FloatingActionButton is an icon button that floats over the content of the 

screen at a fixed place. 

 

Row and Column 
🞄 Row and Column are the two most important and powerful widgets in Flutter. These 

widgets let you align children horizontally and vertically as per the requirement. 

🞄 To design any UI(User Interface) in a flutter, we need to arrange its content in the Row 

and Column manner so these Row and Column widgets are required when designing UI. 

Row Widget 

🞄 This widget arranges its children in a horizontal direction on the screen. That is , it will 

expect child widgets in a horizontal array. If the child widgets need to fill the available 

horizontal space, we must wrap the children widgets in an Expanded widget. 

🞄 A row widget does not appear scrollable because it displays the widgets within the visible 

view. 

🞄 We can control how a row widget aligns its children based on our choice using the 

property crossAxisAlignment and mainAxisAlignment. The row's cross-axis will 

run vertically, and the main axis will run horizontally. See the below visual 

representation to understand it more clearly. 

We can align the row's children widget with the help of the following properties: 

🞄 start: It will place the children from the starting of the main axis. 

🞄 end: It will place the children at the end of the main axis. 

🞄 center: It will place the children in the middle of the main axis. 

🞄 spaceBetween: It will place the free space between the children evenly. 

🞄 spaceAround: It will place the free space between the children evenly and half of that 

space before and after the first and last children widget. 



MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

🞄 spaceEvenly: It will place the free space between the children evenly and before and after 

the first and last children widget. 

 

Column 
🞄 This widget arranges its children in a vertical direction on the screen. In other words, it 

will expect a vertical array of children widgets. If the child widgets need to fill the 

available vertical space, we must wrap the children widgets in an Expanded widget 

🞄 We can also control how a column widget aligns its children using the property 

mainAxisAlignment and crossAxisAlignment. The column's cross-axis will 

run horizontally, and the main axis will run vertically. The below visual representation 

explains it more clearly. 

 

 
Text 

🞄 Flutter Text 

🞄 A Text is a widget in Flutter that allows us to display a string of text with a single line in 

our application. Depending on the layout constraints, we can break the string across 

multiple lines or might all be displayed on the same line. If we do not specify any styling 

to the text widget, it will use the closest DefaultTextStyle class style. This class does not 

have any explicit style. In this article, we are going to learn how to use a Text widget and 

how to style it in our application 

The following are the essential properties of the Text widget used in our application: 

🞄 TextAlign: It is used to specify how our text is aligned horizontally. It also controls the 

text location. 

🞄 TextDirection: It is used to determine how textAlign values control the layout of our text. 

Usually, we write text from left to right, but we can change it using this parameter. 

🞄 Overflow: It is used to determine when the text will not fit in the available space. It means 

we have specified more text than the available space. 

🞄 TextScaleFactor: It is used to determine the scaling to the text displayed by the Text 

widget. Suppose we have specified the text scale factor as 1.5, then our text will be 50 

percent larger than the specified font size…… 



MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

Center widget 

🞄 A widget that centers its child within itself. 

🞄 This widget will be as big as possible if its dimensions are constrained 

and widthFactor and heightFactor are null. If a dimension is unconstrained and the 

corresponding size factor is null then the widget will match its child's size in that 

dimension. 

🞄 If a size factor is non-null then the corresponding dimension of this widget will be the 

product of the child's dimension and the size factor. 

🞄 For example if widthFactor is 2.0 then the width of this widget will always be twice its 

child's width. 

Align class 

🞄 A widget that aligns its child within itself and optionally sizes itself based on the child's 

size. 

🞄 For example, to align a box at the bottom right, you would pass this box a tight constraint 

that is bigger than the child's natural size, with an alignment of Alignment.bottomRight. 

🞄 This widget will be as big as possible if its dimensions are constrained 

and widthFactor and heightFactor are null. If a dimension is unconstrained and the 

corresponding size factor is null then the widget will match its child's size in that 

dimension. 

🞄 if a size factor is non-null then the corresponding dimension of this widget will be the 

product of the child's dimension and the size factor. For example if widthFactor is 2.0 then 

the width of this widget will always be twice its child's width. 

Flutter Container 

🞄 The container in Flutter is a parent widget that can contain multiple child widgets and 

manage them efficiently through width, height, padding, background color, etc. 

🞄 It is a widget that combines common painting, positioning, and sizing of the child widgets. 

🞄 It is also a class to store one or more widgets and position them on the screen according to 

our needs. Generally, it is similar to a box for storing contents. It allows many attributes to 

the user for decorating its child widgets, such as using margin, which separates the 

container with other contents 

🞄 A container widget is same as <div> tag in html. If this widget does not contain any child 

widget, it will fill the whole area on the screen automatically. Otherwise, it will wrap the 

child widget according to the specified height & width 

🞄 A basic container has a margin, border, and padding properties surrounding its child 

widget, as shown in the below image: 



MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

 

Properties of Container widget 

1. child: This property is used to store the child widget of the container 

2. color: This property is used to set the background color of the text. It also changes the 

background color of the entire container. 

3. height and width: This property is used to set the container's height and width according to 

our needs. By default, the container always takes the space based on its child widget. 

4. margin: This property is used to surround the empty space around the container. We can 

observe this by seeing white space around the container. Suppose we have used 

the EdgeInsets.all(25) that set the equal margin in all four directions 

5. padding: This property is used to set the distance between the border of the container (all 

four directions) and its child widget. We can observe this by seeing the space between the 

container and the child widget. Here, we have used an EdgeInsets.all(35) that set the space 

between text and all four container directions 

6. alignment: This property is used to set the position of the child within the 

container. Flutter allows the user to align its element in various ways such as center, bottom, 

bottom center, topLeft, centerRight, left, right, and many more. In the below example, we are 

going to align its child into the bottom right position. 

7. decoration: This property allows the developer to add decoration on the widget. It decorates 

or paint the widget behind the child. If we want to decorate or paint in front of a child, we need 

to use the forgroundDecoration parameter. 

8. transform: The transform property allows developers to rotate the container. It can rotate 

the container in any direction, i.e., change the container coordinate in the parent widget. In the 

below example, we will rotate the container in the z-axis 

9. constraints: This property is used when we want to add additional constraints to the child. 

It contains various constructors, such as tight, loose, expand, etc. Let's see how to use these 

constructors in our app: 



MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

Padding 

🞄 Padding widget in flutter does exactly what its name says, it adds padding or empty space 

around a widget or a bunch of widgets. We can apply padding around any widget by 

placing it as the child of the Padding widget. The size of the child widget inside padding is 

constrained by how much space is remaining after adding empty space around. 

🞄 The Padding widget adds empty space around any widget by using the abstract 

EdgeInsetsGeometry class. 

Properties of Padding Widget: 

🞄 child: This property simply takes a widget as the object to display is inside the Padding 

widget on the screen. 

🞄 padding: This property holds the EdgeInsetsGeometry class as the object to add empty 

space around the widget. 

Flutter Buttons 

🞄 Buttons are the graphical control element that provides a user to trigger an event such as 

taking actions, making choices, searching things, and many more. They can be placed 

anywhere in our UI like dialogs, forms, cards, toolbars, etc. 

🞄 Buttons are the Flutter widgets, which is a part of the material design library. Flutter 

provides several types of buttons that have different shapes, styles, and features. 

Features of Buttons 

🞄 The standard features of a button in Flutter are given below: 

🞄 We can easily apply themes on buttons, shapes, color, animation, and behavior. 

🞄 We can also theme icons and text inside the button. 

Buttons can be composed of different child widgets for different characteristics 

Types of Flutter Buttons 

🞄 Following are the different types of button available in Flutter: 

🞄 Flat Button 

🞄 Raised Button 

🞄 Floating Button 

🞄 Drop Down Button 

🞄 Icon Button 

🞄 Inkwell Button 

🞄 PopupMenu Button 

🞄 Outline Button 

Flutter Images 
🞄 When we create an app in Flutter, it includes both code and assets (resources). 

🞄 An asset is a file, which is bundled and deployed with the app and is accessible at runtime. 

The asset can include static data, configuration files, icons, and images. The Flutter 



MOBILE APPLICATION DEVELOPMENT 
 

www.ourcreativeinfo.in 

supports many image formats, such as JPEG, WebP, PNG, GIF, animated WebP/GIF, 

BMP, and WBMP. 

How to display the image in Flutter 

🞄 Step 1: First, we need to create a new folder inside the root of the Flutter project and 

named it assets. We can also give it any other name if you want. 

🞄 Step 2: Next, inside this folder, add one image manually. 

🞄 Step 3: Update the pubspec.yaml file. Suppose the image name is tablet.png, then 

pubspec.yaml file is: 

assets: 

- assets/tablet.png 

- assets/background.png 

🞄 Step 4: Finally, open themain.dart file and insert the code. 

🞄 Step 5: Now, run the app. 

 

Flutter Icons 
🞄 An icon is a graphic image representing an application or any specific entity containing 

meaning for the user. It can be selectable and non-selectable. 

🞄 For example, the company's logo is non-selectable. Sometimes it also contains a hyperlink 

to go to another page. It also acts as a sign in place of a detailed explanation of the actual 

entity. 

🞄 Flutter provides an Icon Widget to create icons in our applications. We can create icons in 

Flutter, either using inbuilt icons or with the custom icons. Flutter provides the list of all 

icons in the Icons class. In this article, we are going to learn how to use Flutter icons in the 

application. 

Icon Widget Properties 

🞄 Flutter icons widget has different properties for customizing the icons. These properties are 

explained below: 
 

Property Descriptions 

icon It is used to specify the icon name to display in the application. Generally, Flutter 

uses material design icons that are symbols for common actions and items. 

color It is used to specify the color of the icon. 

size It is used to specify the size of the icon in pixels. Usually, icons have equal height 

and width. 

textDirection It is used to specify to which direction the icon will be rendered. 

 


