
JAVA  

www.ourcreativeinfo.in 

UNIT – III 

 
INTERFACES, PACKAGES AND MULTITHREADED PROGRAMMING 

 
INTERFACE [2 Marks] 

• Interface is a collection of final fields and abstract methods. 

• Interface looks like class but it is not a class. 

• An interface can have methods and variables just like the class 

• The methods declared in interface are by default abstract (only method signature, no body). 

• The variables declared in an interface are public, static & final by default. 

• The interface in java is a mechanism to achieve fully abstraction. 

• Java Interface also represents IS-A relationship. 

• You cannot instantiate an interface. 

• An interface does not contain any constructors. 

• All of the methods in an interface are abstract. 

• An interface cannot contain instance fields. The only fields that can appear in an interface 
must be declared both static and final. 

• An interface is not extended by a class; it is implemented by a class. 

• An interface can extend multiple interfaces. 

 
Why use Java interface? 

There are mainly three reasons to use interface. They are given below. 

• It is used to achieve fully abstraction. 

• By interface, we can support the functionality of multiple inheritance. 

• It can be used to achieve loose coupling. 

 
The java compiler adds public and abstract keywords before the interface method and public, 

static and final keywords before data members. 

In other words, Interface fields are public, static and final bydefault, and methods are public and 
abstract. 

 



JAVA  

www.ourcreativeinfo.in 

Understanding relationship between classes and interfaces 

As shown in the figure given below, a class extends another class, an interface extends another 

interface but a class implements an interface. 

 
DIFFERENCES BETWEEN A CLASS AND AN INTERFACE [5 Marks] 

 
Class Interface 

The fields declared in a class can be constant 
or variable 

The fields declared in interface are always 
constant. 

The methods declared in class can be 
abstract or non abstract 

The methods declared in interface are always 
abstract 

We can create object of class We cannot create object of an interface 

It can be various access specifier like public, 

private, protected 

It can only use public access specifier 

Using class we cannot use multiple 
inheritance 

Using interface we can achieve multiple 
inheritance 

We can declare constructor in a class We cannot declare constructor in interface 

 

 
Declaration 

Interfaces are declared by specifying a keyword “interface”. E.g.: 

 
interface MyInterface 

{ 

/* All the methods are public abstract by default 

* Note down that these methods are not having body 

*/ 

public void method1(); 

public void method2(); 

} 
 

EXTENDING INTERFACES: [5 Marks] 

An interface can extend another interface, similarly to the way that a class can extend another class. The 

extends keyword is used to extend an interface, and the child interface inherits the methods of the parent 

interface. 

 

Syntax 

interface name2 extends name1 

{ 

Body of name2; 

} 



JAVA  

www.ourcreativeinfo.in 

Example 

interface A 

{ 

int rno=10; 

String name="Sachin"; 

} 
 

interface B extends A 

{ 

void display(); 

} 
 

Extending Multiple Interfaces: 

A Java class can only extend one parent class. Multiple inheritance is not allowed. Interfaces are not 
classes, however, and an interface can extend more than one parent interface. 

The extends keyword is used once, and the parent interfaces are declared in a comma-separated list. 

 

Example 

interface A 

{ 

int rno=10; 

String name="Sachin"; 

} 
 
 

interface B extends A 

{ 

void display(); 

} 

interface C extends A,B 

{ 

} 

 

INTERFACE IMPLEMENTATION [5 Marks] 

 
This is how a class implements an interface. It has to provide the body of all the methods that are declared in 
interface. 

Note: Class implements interface but an interface extends another interface. 

Syntax 

interface <interface-name> 

{ 

} 

class <class-name> implements <interface-name> 

{ 

} 



JAVA  

www.ourcreativeinfo.in 

example 

interface A 

{ 

public void method1(); public 

void method2(); 

} 
 

class XYZ implements A 

{ 

public void method1() 

{ 

System.out.println("implementation of method1"); 

} 

public void method2() 

{ 

System.out.println("implementation of method2"); 

} 

} 
 

class Interface 

{ 

public static void main(String args[]) 

{ 

XYZ obj = new 

XYZ(); obj. 

method1(); 

obj.method2(); 

} 

} 
 

Output 

C:\Program Files\Java\jdk1.7.0\bin>javac Interface.java 

C:\Program Files\Java\jdk1.7.0\bin>java Interface 

implementation of method1 
implementation of method2 



JAVA  

www.ourcreativeinfo.in 

MULTIPLE INHERITANCE IN JAVA BY INTERFACE [5 Marks] 

If a class implements multiple interfaces, or an interface extends multiple interfaces i.e. known as multiple 

inheritance. 

 
Example of multiple inheritance in java using interface. 

interface A 

{ 

public void method1(); 

} 
 

interface B 

{ 

public void method2(); 

} 

class C implements A,B 

{ 

public void method1() 

{ 

System.out.println("implementation of method1"); 

} 

public void method2() 

{ 

System.out.println("implementation of method2"); 

} 

} 
 

class MultipleInheritance 

{ 

public static void main(String args[]) 

{ 

 

 

} 

OUTPU 

T 

C obj = new 

C(); obj. 

method1(); 

obj.method2(); 

C:\Program Files\Java\jdk1.7.0\bin>javac MultipleInheritance.java 

C:\Program Files\Java\jdk1.7.0\bin>java MultipleInheritance 

implementation of method1 

implementation of method2 



JAVA  

www.ourcreativeinfo.in 

JAVA PACKAGES 

 
One of the requirements of an Object Oriented language is that it provides 

encapsulation.Encapsulation is a technique by which multiple related objects can be grouped under one 

object. Java implements encapsulation by the use of Packages. 

Package - A package is a collection of related classes, interfaces and sub packages. [2 Marks] 

Benefits of Packages 

1. Classes contained in packages of other programs can be easily reused. 
2. Two classes in two different packages can have the same name. They can be uniquely identified 

by packagename.classname. 
3. Packages also provide a way for separating "design" from "coding". 

4. You can define classes inside a package that are not accessible by code outside that package. You 

can also define class members that are only exposed to other members of the same package. 

In practical applications, we may have to build our own classes and use existing classes libraries for 

designing use interfaces. 

 
JAVA PACKAGES ARE CLASSIFIED INTO TWO TYPES. [2 Marks] 

 
1. Java API package 

2. User defined packages 

 
 

Using Java API Packages 

 



JAVA  

www.ourcreativeinfo.in 

 

SYSTEM PACKAGES [2 Marks] 

Java API provides a large number of classes grouped into different packages according to 

functionality. Most of the time in our programming we use the Java System Packages. The following are 

the frequently used system packages, showing the functional breakdown. 

 
 

 
The following are the brief description of Java System Packages and their Classes: [2 Marks] 

 
Java.lang 

Lang means to language. Lang classes are used by java compiler itself and therefore they 

are automatically imported. Classes that are required for primitive types, strings main 

functions, threads and exceptions included in it. 

Java.util 
Util stands for language utility. It include classes such as vectors, has tables random 

numbers, date etc. 

Java.io 
Input/Output support classes are included in it. They provide the facilities for the input and 

output of data. 

 
Java.awt 

Awt stands for abstract window toolkit. It is used for implementing graphical user 

interface in the program. They include classes for windows, buttons, Menu , checkbocx etc. 

Java.net 
Net stands for networking. Therefore the classes required for communicating with local 

computers as well as with internet swervers are included in it. 

Java.applet This pacake includes the classes for creating and implementing applets. 

 

 
Naming Conventions [2 Marks] 

 
Package names are written in all lower case to avoid conflict with the names of classes or interfaces. 



JAVA  

www.ourcreativeinfo.in 

CREATING A PACKAGE [10 Marks] 

 
Creating a package in java is quite easy. We must first declare the name of the package using the 

package keyword followed by a package name. It must be a first statement in java source file. 

 
package <package-name>; 

public class <class-name> 

{ 

...statement; 

} 

 

Ex- package package1 
Public class ClassA 

{ 

} 

Here the package name is package1. The class ClassA is now considered a part of this package. This is 

saved as a file called ClassA.java and located in a directory name package1. When a source file is 

compiled, java will create .class file and store it in the same directory. 

Remember that the .class file must be located in a directory that has the same name as the package. The 

following steps are used to create a package 

 
1. Declare the package at the beginning of a file using the form 

package packagename; 

2. Define the class that is to be put in the package and define it public 

3. Create a subdirectory under the directory where the main source files are stored. 

4. Store the listing as the classname.java file in the subdirectory created. 

5. Compile the file. This creates .class file in the subdirectory. 

 
Java also support the concept of package hierarchy. This is done by specifying multiple names in a package 

statements, separated by dots(.) 

Example : package package1.secondpackage; 

Package package1; 

Public class ClassA 

{ 

Public void display(); 

System.out.println(“I am in package1 class A”); 

} 

} 
 

ACCESSING PACKAGE [2 Marks] 

import keyword is used to import built-in and user-defined packages into your java source file. So that 

your class can refer to a class that is in another package by directly using its name. 
 

Syntax 

import package1.package2.classname; 



JAVA  

www.ourcreativeinfo.in 

USING PACKAGE [10 Marks] 

package p1; 

public class ClassA 

{ 

public void display() 

{ 

System.out.println("Welcome to Package"); 

} 

} 
 

Save this program ClassA.java in bin folder(directory) 

 
Compilation : compile ClassA.java file using following command 

C:\Program Files\Java\jdk1.7.0\bin>javac -d . ClassA.java 

 
When you compile above program p1 package is created in bin. In that p1 package ClassA.class file also 

created. 

 
import p1.ClassA; 

class Pack 

{ 

public static void main(String args[]) 

{ 

ClassA a=new ClassA(); 

a.display(); 

} 

} 
 

Save this program Pack.java in bin folder(directory) 

 
Compilation : compile Pack.java file using following command 

C:\Program Files\Java\jdk1.7.0\bin>javac Pack.java Execution : 

C:\Program Files\Java\jdk1.7.0\bin>java Pack 

Welcome to Package 



JAVA  

www.ourcreativeinfo.in 

ACCESS PROTECTION [2 Marks] 

 

Access modifier 

Access Location 

public Protected private Default 

Same class 

Subclass in same class 

Other classes in same class 

Subclass in other package 
Non-sub class in other package 

Yes Yes Yes Yes 

Yes Yes No Yes 

Yes Yes No Yes 

Yes Yes No No 

Yes No No No 

 

 
 

Lab 8 : Program to demonstrate a)Packages b)Interfaces. [5 Marks] 

// Save this program A.java 

package p1; 

public interface A 

{ 

int a=10,b=20; 

} 
 

/* Compilation : compile A.java file using following command 

C:\Program Files\Java\jdk1.7.0\bin>javac -d . A.java 

 
When you compile above program p1 package is created in bin. In that p1 package A.class file also created. */ 

 
// Save this file B.java 

package p2; 

public class B 

{ 

public void display() 

{ 

System.out.println("I am Package p2 and in Class B"); 

} 

} 

/* Compilation : compile B.java file using following command 

C:\Program Files\Java\jdk1.7.0\bin>javac -d . B.java 

 
When you compile above program p2 package is created in bin. In that p2 package B.class file also 

created. */ 



JAVA  

www.ourcreativeinfo.in 

MULTITHREADED PROGRAMMING 
 

Thread - Thread is a small block of code, which executes particular task [2 Marks] 

 
A thread is a lightweight sub process, a smallest unit of processing. It is a separate path of 

execution. 

 

Threads are independent, if there occurs exception in one thread, it doesn't affect other threads. It shares a 

common memory area. 

Multithreading in java is a process of executing multiple threads simultaneously. [2 Marks] 

Advantage of Java Multithreading 

1) It doesn't block the user because threads are independent and you can perform multiple 

operations at same time. 

2) You can perform many operations together so it saves time. 

3) Threads are independent so it doesn't affect other threads if exception occur in a single thread. 

 
Multitasking 

Multitasking is a process of executing multiple tasks simultaneously. We use multitasking to utilize the 

CPU. Multitasking can be achieved by two ways: 

 

• Process-based Multitasking(Multiprocessing) 

• Thread-based Multitasking(Multithreading) 

 
1) Process-based Multitasking (Multiprocessing) 

 
• Each process have its own address in memory i.e. each process allocates separate memory area. 

• Process is heavyweight. 

• Cost of communication between the process is high. 

• Switching from one process to another require some time for saving and loading registers, 

memory maps, updating lists etc. 

 

2) Thread-based Multitasking (Multithreading) 

 
• Threads share the same address space. 

• Thread is lightweight. 

• Cost of communication between the thread is low. 



JAVA  

www.ourcreativeinfo.in 

Note: At least one process is required for each thread. 

 
As shown in the above figure, thread is executed inside the process. There is context-switching 

between the threads. There can be multiple processes inside the OS and one process can have 

multiple threads. 

 
Note: At a time one thread is executed only. 

CREATING THREADS [2 or 5 or 10 Marks] 

Threads are implemented in the form of objects that contains a method called run(). The 

run() method is the heart and soul of any thread. 

In run() method only we can implement the threads behavior . 

Syntax- 

Public void run() 

{ 

Body of thread 

} 

There are two ways to create a thread: 

 
1. By extending Thread class -: define class that extends thread class and override its run() 

method. 
2. By implementing Runnable interface-: define class that implements Runnable interface. 



JAVA  

www.ourcreativeinfo.in 

EXTENDING THREAD CLASS [5 Marks] 

We can make our class runnable by extending thread class java.lang.Thread. This gives us access to all 

the thread methods directly. 

It includes the following steps. 

1. Declare the class as extending the Thread class 

2. Implement the run() method 

3. Create a thread object and call the start() method to initiate the thread execution. 

 
Declaring the class 

class MyThread extends Thread 

{ 

Body 

} 
 

Implementing the run() method 

The run() method has been inherited by the class MyThread. public 

void run() 

{ 

Body 

} 
 

Starting new thread 

To start our thread we have to create object of thread class and using object we have to call our start() 

method. 

MyThread obj=new MyThread(); 

obj.start(); 

 
Example of Creating threads using thread class 

 
class A extends Thread 

{ 

public void run() 

{ 

System.out.println("Starts Thread A"); 

for(int i=1;i<=5;i++) 

{ 

System.out.println("From thread A : i = " +i); 

} 

System.out.println("Exit from Thread A"); 

} 

} 

class B extends Thread 

{ 

public void run() 



JAVA  

www.ourcreativeinfo.in 

{ 

System.out.println("Starts Thread B"); 

for(int j=1;j<=5;j++) 

{ 

System.out.println("From thread B : j = " +j); 

} 

System.out.println("Exit from Thread B"); 

} 

} 
 

class C extends Thread 

{ 

public void run() 

{ 

System.out.println("Starts Thread C"); 

for(int k=1;k<=5;k++) 

{ 

System.out.println("From thread C : k = " +k); 

} 

System.out.println("Exit from Thread C"); 

} 

} 
 

class MyThread 

{ 

public static void main(String args[]) 

{ 

A a=new A(); 

B b=new B(); 

C c=new C(); 

a.start(); 

b.start(); 

c.start(); 

} 

} 
 

Output 

C:\Program Files\Java\jdk1.7.0\bin>javac MyThread 

C:\Program Files\Java\jdk1.7.0\bin>java MyThread 

Starts Thread A 

From thread A : i = 1 

From thread A : i = 2 

From thread A : i = 3 



JAVA  

www.ourcreativeinfo.in 

From thread A : i = 4 

From thread A : i = 5 

Exit from Thread A 

Starts Thread C From 

thread C : k = 1 From 

thread C : k = 2 From 

thread C : k = 3 From 

thread C : k = 4 From 

thread C : k = 5 Exit 

from Thread C Starts 

Thread B From thread 

B : j = 1 From thread 

B : j = 2 From thread 

B : j = 3 From thread 

B : j = 4 From thread 

B : j = 5 Exit from 

Thread B 

 
STOPPING AND BLOCKING A THREAD [2 Marks] 

 
Stopping a thread 

Whenever we want to stop a thread from running we may do so by calling its stop() method. 

Example - : a.stop(); 

This statement causes the thread to move to dead state. A thread will also move to the dead state 

automatically when it reaches the end of its method. 

 
Blocking a Thread 

A thread can also be temporarily suspended or blocked from entering into the runnable and running 

state by using following methods. 

sleep() // blocked for a specified time 

suspend() //blocked until further orders 

wait() //blocked until certain condition occurs 

 
These methods cause the thread to go into the blocked state. The thread will return to runnable state 

when specified time is elapsed in the case of sleep(). 

The resume() method is invoked in the case of suspend(). notify() 

method is called in the case of wait(). 



JAVA  

www.ourcreativeinfo.in 

Runna 

LIFE CYCLE OF A THREAD [5 Marks] 

The life cycle of the thread in java is controlled by JVM. The java thread states are as follows: 

 
1. Newborn 

2. Runnable 

3. Running 

4. Blocked/ Non-Runnable 

5. Dead/Terminated 
 
 

1 Newborn state - : 
 

When we create thread object, the thread is born and it is said to be newborn state.the thread 

is not yet scheduled for running. At this stage we can do only one of the following things with it 

1. Schedule it for running by calling start() method 

2. Kill it using stop() method 

 

 
2 Runnable State - : 

 
The runnable state means that the thread is ready for execution and waiting for the 

availability of the processor. i.e the thread has joined queue and waiting for execution. 

3 Running - : 

Running means that the processor has given its time to the thread for its execution. 

At this stage we can do only only one of the following thing with it. 

 
• It has been suspended using suspend() method. A suspended thread can be revived using 

resume() method. 

• It has been made to sleep. We can put thread to sleep for a specified time period using the 

method sleep(time). This means that the thread is out of the queue during this time period. 

• It has been told to wait until same event occurs. This is done using the wait() method. The 

thread can be scheduled to run again using the notify() method. 



JAVA  

www.ourcreativeinfo.in 

4 Blocked State - : 

This is the state when the thread is still alive, but is currently not eligible to run. 

 
5 Dead State - : 

A thread is in terminated or dead state when its run() method exits. 

 
THREAD PRIORITY [2 Marks] 

For Executing a Program java Contains a Scheduler which Executes the Programs of java on the 

behalf of Priorities and because a Process or can Execute only one Thread at a time and the Priority of a 

Thread will determine which Thread will be Executed now and by default all the Threads have a Same 

Priorities. But if a Thread has a Higher Priority then this will be Executed First and then after other lower 

Priorities Thread will be Executed. Generally JAVA Provided us three types of Priorities those are MIN_ 

Priority , Max-Priority and Normal_ Priority They are used as. 

 
1) MAX_PRIORITY 

2) NORM_PRIORITY 

3) MAX_PRIORITY 

 
In this Minimum Priority of a thread has value 0 and Normal Priority has value 5 and Maximum 

Priority has a value 10. 

 
The following example creates a new thread and starts it running: 

class A extends Thread 

{ 

public void run() 

{ 

System.out.println("Class A starts"); 

for(int i=1;i<=5;i++) 

{ 

System.out.println("i = "+i); 

} 

System.out.println("Class A exits"); 

} 

} 
 

class B extends Thread 

{ 

public void run() 

{ 

System.out.println("Class B starts"); 

for(int j=1;j<=5;j++) 

{ 

System.out.println("j = "+j); 

} 

System.out.println("Class B exits"); 

} 

} 



JAVA  

www.ourcreativeinfo.in 

class C extends Thread 

{ 

public void run() 

{ 

System.out.println("Class C starts"); 

for(int k=1;k<=5;k++) 

{ 

System.out.println("k = "+k); 

} 

System.out.println("Class C exits"); 

} 

} 

class PriorityDemo 

{ 

public static void main(String args[]) 

{ 

A a=new A(); 

B b=new B(); 

C c=new C(); 

c.setPriority(Thread.MIN_PRIORITY); 

a.setPriority(Thread.MAX_PRIORITY); 

b.setPriority(Thread.NORM_PRIORITY); 

c.start(); 

a.start(); 

b.start(); 

} 

} 

OUTPUT 

C:\Program Files\Java\jdk1.7.0\bin>javac PriorityDemo.java 

C:\Program Files\Java\jdk1.7.0\bin>java PriorityDemo Class A 

starts 

i = 1 

i = 2 

i = 3 

i = 4 

i = 5 

Class A exits 

Class C starts 

Class B starts 

j = 1 

j = 2 

j = 3 

j = 4 

j = 5 

Class B exits 

k = 1 
k = 2 

k = 3 

k = 4 

k = 5 Class C exits 



JAVA  

www.ourcreativeinfo.in 

SYNCHRONIZATION IN JAVA [5 Marks] 

 
Synchronization in java is the capability to control the access of multiple threads to any shared 

resource. 

 

Java Synchronization is better option where we want to allow only one thread to access the shared 

resource. 

 
Why use Synchronization 

 
The synchronization is mainly used to 

1. To prevent thread interference. 

2. To prevent consistency problem. 

 
Concept of Lock in Java 

 
Synchronization is built around an internal entity known as the lock or monitor. Every object has an lock 

associated with it. By convention, a thread that needs consistent access to an object's fields has to acquire 

the object's lock before accessing them, and then release the lock when it's done with them. 

Java synchronized method 

 
If you declare any method as synchronized, it is known as synchronized method. Synchronized 

method is used to lock an object for any shared resource. 

When a thread invokes a synchronized method, it automatically acquires the lock for that object and 

releases it when the thread completes its task. 

 

Program to show the thread synchronization by creating threads using runnable interface. 

 
class Table 

{ 

synchronized void printTable(int n) 

{ 

for(int i=1;i<=5;i++) 

{ 

System.out.println(n*i); 

try 

{ 



JAVA  

www.ourcreativeinfo.in 

Thread.sleep(400); 

} 

catch(Exception e) 

{ 

System.out.println(e); 

} 

} 

} 

} 

class MyThread1 implements Runnable 

{ 

Table t; 

MyThread1(Table t) 

{ 

this.t=t; 

} 

public void run() 

{ 

t.printTable(5); 

} 

} 

class MyThread2 implements Runnable 

{ 

Table t; 

MyThread2(Table t) 

{ 

this.t=t; 

} 

public void run() 

{ 

t.printTable(100); 

} 

} 

class Synchronization 

{ 

public static void main(String args[]) 

{ 

Table obj = new Table(); 

MyThread1 r1=new MyThread1(obj); 

Thread t1=new Thread(r1); 

 
MyThread2 r2=new MyThread2(obj); 

Thread t2=new Thread(r2); 



JAVA  

www.ourcreativeinfo.in 

 

t1.start(); 

t2.start(); 

} 

} 

OUTPUT 

C:\Program Files\Java\jdk1.7.0\bin>javac Synchronization.java 

C:\Program Files\Java\jdk1.7.0\bin>java Synchronization 

5 

10 

15 

20 

25 

100 

200 

300 

400 

500 



JAVA  

www.ourcreativeinfo.in 

IMPLEMENTING RUNNABLE INTERFACE [5 Marks] 

 
• Declare class as implementing the runnable interface 

• Implement the run method. 

• Create a thread by defining an object that is instantiated from this runnable class as the target of 
the thread. 

• Call threads start() method to run the thread. 

 

Class X implements Runnable 

{ 
Public void run() 

{ 
for(int i=1;i<=5;i++) 

{ 
System.out.pritnln(“i=” +i); 

} 

} 

} 
 

Class RunnableDemo 

{ 

Public static void main(String args[]) 

{ 

X runnable=new X(); 

Thread t=new Thread(runnbale); 

t.start(); 
} 

} 

 

OUTPUT 

i=1 

i=2 

i=3 

i=4 

i=5 


