
JAVA

www.ourcreativeinfo.in

UNIT – II

CLASSES, ARRAYS, STRINGS AND VECTORS

CLASS [2 Marks]

Class is a user defined data type. It is a collection of data and methods.

A class is a group of objects that has common properties. It is a template or blueprint from which objects

are created.

Syntax to declare a class:

class <class_name>

{

data member; //properties

method; // behavior

}

Method in Java

In java, a method is like function i.e. used to expose behavior of an object.

Advantage of Method

• Code Reusability

• Code Optimization

new keyword

The new keyword is used to allocate memory at runtime.

Fields Declaration

Class Student

{

Int Rno;

String name;

}

Method Declaration

Type methodname(parameter-list)

{

Method Body;

}

JAVA

www.ourcreativeinfo.in

class Student

{

i
n
t
R

n
o
;
S
tr
i
n
g
n
a
m
e;

void insertRecord(int r, String n)

{

R

n
o
=
r

;

n
a
m
e
=
n

;

}

}

Object in Java

OBJECT

An object is a real time entity that has properties and behavior is known as an object e.g.

JAVA

www.ourcreativeinfo.in

chair, bike, marker, pen, table, car etc. It can be physical or logical (tengible and intengibleAn object has

three characteristics: [2

Marks]

• properties: represents data (value) of an object.

• behavior: represents the behavior (functionality) of an object such as deposit, withdraw etc.

Let us now look deep into what are objects. If we consider the real-world we can find many objects

around us, Cars, Dogs, Humans, etc. All these objects have a state and behavior.

If we consider a dog, then its state is - name, breed, color, and the behavior is - barking, wagging, running

If you compare the software object with a real world object, they have very similar characteristics.

Software objects also have a state and behavior. A software object's state is stored in fields and

behavior is shown via methods.

So in software development, methods operate on the internal state of an object and the object- to- object

communication is done via methods.

Classes in Java:

A class is a blue print from which individual objects are created. A

sample of a class is given below:

class Dog

{

String breed;

int age;

String color;

void barking()

{

}

void hungry()

{

}

void sleeping()

{

}

}

CREATING AN OBJECT: [2 Marks]

As mentioned previously, a class provides the blueprints for objects. So basically an object is created from
a class. In Java, the new key word is used to create new objects.

There are three steps when creating an object from a class:

• Declaration: A variable declaration with a variable name with an object type.

• Instantiation: The 'new' key word is used to create the object.

• Initialization: The 'new' keyword is followed by a call to a constructor. This call initializes the

new object.

JAVA

www.ourcreativeinfo.in

Example of creating an object is given below:

class Puppy{

Puppy(String name){

// This constructor has one parameter, name.

System.out.println("Passed Name is :" + name);

}

Public static void main(String []args){

// Following statement would create an object myPuppy Puppy

myPuppy = new Puppy("tommy");
}

}

If we compile and run the above program, then it would produce the following result:
Passed Name is :tommy

Accessing Instance Variables and Methods:

Instance variables and methods are accessed via created objects. To access an instance variable the fully

qualified path should be as follows:

/* First create an object */

ObjectReference = new Constructor();

/* Now call a variable as follows */
ObjectReference.variableName;

/* Now you can call a class method as follows */
ObjectReference.MethodName();

Example of Object and class that maintains the records of students

In this example, we are creating the two objects of Student class and initializing the value to these objects

by invoking the insertRecord method on it. Here, we are displaying the state (data) of the objects by

invoking the displayInformation method.

class Student2

{

int rollno;

String name;

void insertRecord(int r, String n)

{

rollno=r; name=n;
}

void displayInformation()

{

System.out.println(rollno+" "+name);

}

}

class Stud

{

public static void main(String args[])

{

JAVA

www.ourcreativeinfo.in

Student2 s1=new Student2();
Student2 s2=new Student2();

s1.insertRecord(111,"Karan");

s2.insertRecord(222,"Aryan");

s1.displayInformation();

s2.displayInformation();
}

}

111 Karan

222 Aryan

/* You can access instance variable as follows as well */ System.out.println("Variable

Value :" + myPuppy.puppyAge);

}

}

If we compile and run the above program, then it would produce the following result:

Name chosen is :tommy

Puppy's age is :2

Variable Value :2

CONSTRUCTORS IN JAVA [5 Marks]

Constructor in java is a special type of method that is used to initialize the object.

Java constructor is invoked at the time of object creation. It constructs the values i.e. provides data for the

object that is why it is known as constructor.

Rules for creating java constructor

There are basically two rules defined for the constructor.

1. Constructor name must be same as its class name

2. Constructor must have no explicit return type

Types of java constructors

There are two types of constructors:

1. Default constructor (no-arg constructor)

JAVA

www.ourcreativeinfo.in

2. Parameterized constructor

1 Default Constructor

A constructor that has no parameter is known as default constructor. Syntax of

default constructor:

<class_name>()

{

}

Example of default constructor

In this example, we are creating the no-arg constructor in the Bike class. It will be invoked at the time of

object creation.

class Bike1

{

Bike1()

{

}

}

System.out.println("Bike is created");

JAVA

www.ourcreativeinfo.in

class DefaultConstructor

{

public static void main(String args[])

{

Bike1 b=new Bike1();

}

}

Output:

Bike is created

Rule: If there is no constructor in a class, compiler automatically creates a default constructor. default

constructor

What is the purpose of default constructor?

Default constructor provides the default values to the object like 0, null etc. depending on the type.

Example of default constructor that displays the default values

class Student3{ int

id;

String name;

void display(){System.out.println(id+" "+name);} public

static void main(String args[]){

Student3 s1=new Student3();

Student3 s2=new Student3();

s1.display();

s2.display();

}

}

Output:

0 null

0 null

Explanation:In the above class,you are not creating any constructor so compiler provides you a default

constructor.Here 0 and null values are provided by default constructor.

JAVA

www.ourcreativeinfo.in

2 parameterized constructor

A constructor that has parameters is known as parameterized constructor.

Why use parameterized constructor?

Parameterized constructor is used to provide different values to the distinct objects.

Example of parameterized constructor

In this example, we have created the constructor of Student class that have two parameters. We can have

any number of parameters in the constructor.

class Student4

{

int id;

String name;

Student4(int i,String n)

{

id = i;

name = n;

}

void display(){System.out.println(id+" "+name);

}

class ParameterizedConstructor

{

public static void main(String args[])

{

Student4 s1 = new Student4(111,"Karan");

Student4 s2 = new Student4(222,"Aryan");

s1.display();

s2.display();

}

}

Output:

111 Karan

222 Aryan

JAVA

www.ourcreativeinfo.in

CONSTRUCTOR OVERLOADING IN JAVA [5 Marks]

Constructors having the same name but in parameter list is called constructor overloading

class Calculator

{

int a,b;

double d;

Calculator()
{

a=0;

b=0;
System.out.println("The addition of " +a+ "+" +b+ " = " +(a+b));

}

Calculator(int x,int y)

{

a=x;

b=y;

System.out.println("The addition of " +a+ "+" +b+ " = " +(a+b));

}

Calculator(double x,int y,int z)

{

d=x;

a=y;

b=z;

System.out.println("The addition of "+d+ "+" +a+ "+" +b+ " = "+(d+a+b));

}

}

class ConstructorOverload

{

public static void main(String args[])

{

Calculator obj1=new Calculator(); Calculator

obj2=new Calculator(10,20); Calculator

obj3=new Calculator(35.6,10,20);

}

}

OUTPUT

C:\Program Files\Java\jdk1.7.0\bin>javac ConstructorOverload.java
C:\Program Files\Java\jdk1.7.0\bin>java ConstructorOverload

The addition of 0+0 = 0

The addition of 10+20 = 30

The addition of 35.6+10+20 = 65.6

JAVA

www.ourcreativeinfo.in

METHOD OVERLOADING [5 Marks]

The methods that have the same name but differs in parameter list is called method overloading.

Method overloading is used when objects are required to perform similar tasks but using different input

parameters.

class Geometry

{

double width,height; int

radius;

void area(double x,double y)

{

width=x;

height=y;

double area=width*height; System.out.println("Area

of Rectangle is = "+area);

}

void area(int x)

{

radius=x;

double area=3.142*radius*radius;

System.out.println("Area of Circle is = "+area);

}

}

class Overloading

{

public static void main(String args[])

{

Geometry g=new Geometry();

g.area(10.2,15.3);

g.area(5);

}

}

Output

C:\Program Files\Java\jdk1.7.0\bin>javac Overloading.java

C:\Program Files\Java\jdk1.7.0\bin>java Overloading

Area of Rectangle is = 156.06

Area of Circle is = 78.55

JAVA

www.ourcreativeinfo.in

JAVA STATIC KEYWORD [5 Marks]

The static keyword in java is used for memory management mainly. We can apply java static keyword

with variables, methods, blocks and nested class. The static keyword belongs to the class than instance of

the class.

The static can be:

1. variable (also known as class variable)

2. method (also known as class method)

3. block

1) Java static variable [2 Marks]

If you declare any variable as static, it is known static variable.

• The static variable can be used to refer the common property of all objects (that is not unique for

each object) e.g. company name of employees,college name of students etc.

• The static variable gets memory only once in class area at the time of class loading.

Advantage of static variable

It makes your program memory efficient (i.e it saves memory).

Understanding problem without static variable

class Student

{

int rollno;

String name;
String college="BCA";

}

Suppose there are 500 students in my college, now all instance data members will get memory each time

when object is created. All students have its unique rollno and name so instance data member is good.

Here, college refers to the common property of all objects. If we make it static, this field will get memory

only once.

Java static property is shared to all objects.

Example of static variable

//Program of static variable
class Student

{

int rollno;

String name;

static String college ="BCA";

JAVA

www.ourcreativeinfo.in

Student(int r,String n)

{

rollno = r;

name = n;

}

void display ()

{

System.out.println(rollno+" "+name+" "+college);

}

}

class StaticVariable

{

public static void main(String args[])

{

Student s1 = new Student(111,"Karan");

Student s2 = new Student(222,"Aryan");

s1.display();

s2.display();

}

}

Output:

111 Karan BCA

222 Aryan BCA

JAVA

www.ourcreativeinfo.in

2) Java static method [2 Marks]

If you apply static keyword with any method, it is known as static method.

• A static method belongs to the class rather than object of a class.

• A static method can be invoked without the need for creating an instance of a class.

• static method can access static data member and can change the value of it.

Example of static method

//Program of changing the common property of all objects(static field).

class Student

{

int rollno;

String name;
static String college = "ITS";

static void change()

{

college = "BCA";

}

Student(int r, String n)

{

rollno = r;
name = n;

}

void display ()

{

System.out.println(rollno+" "+name+" "+college);

}

}

class StaticMethod

{

public static void main(String args[])

{

Student9.change();

Student9 s1 = new Student9 (111,"Karan");

Student9 s2 = new Student9 (222,"Aryan");

Student9 s3 = new Student9 (333,"Sonoo");

s1.display();

s2.display();

s3.display();

}

}

Output: 111 Karan BCA

222 Aryan BCA

JAVA

www.ourcreativeinfo.in

333 Sonoo BCA

Another example of static method that performs normal calculation

//Program to get cube of a given number by static method

class Calculate{

static int cube(int x){
return x*x*x;

}

public static void main(String args[]){

int result=Calculate.cube(5);

System.out.println(result);

}

}

Output:125

Restrictions for static method

There are two main restrictions for the static method. They are:

1. The static method can not use non static data member or call non-static method directly.

2. this and super cannot be used in static context.

class A{

int a=40;//non static

public static void main(String args[]){
System.out.println(a);

}

}

Output:Compile Time Error

Q) why java main method is static?

Ans) because object is not required to call static method if it were non-static method, jvm create object

first then call main() method that will lead the problem of extra memory allocation.

JAVA

www.ourcreativeinfo.in

3) Java static block [2 Marks]

• Is used to initialize the static data member.

• It is executed before main method at the time of classloading.

Example of static block

class A2

{

static

{

}

}

System.out.println("static block is invoked");

class StaticBlock

{

public static void main(String args[])

{

System.out.println("Hello main");

}

}

Output:static block is invoked

Hello main

JAVA

www.ourcreativeinfo.in

INHERITANCE [5 or 10 Marks]

• Inheritance is one of the feature of Object-Oriented Programming (OOPs).

• Inheritance can be defined as the process where one class acquires the properties and methods of
another class.

• In other words, the derived class inherits the properties and behaviors from the base class.

• The derived class is also called subclass and the base class is also known as super-class.

• The derived class can add its own additional variables and methods.

• These additional variable and methods differentiates the derived class from the base class.

• The class which inherits the properties of other is known as subclass (derived class, child class)

and the class whose properties are inherited is known as superclass (base class, parent class).

Inheritance is a compile-time mechanism. A super-class can have any number of subclasses. But a

subclass can have only one superclass. This is because Java does not support multiple inheritance.

The superclass and subclass have “is-a” relationship between them.

extends Keyword [2 Marks]

extends is the keyword used to inherit the properties of a class. Below given is the syntax of extends

keyword.

class Parent

{

.....

.....

}

class Child extends Parent

{

.....

.....

}

1) Single Inheritance [2 Marks]

When a one class extends another one class only then we call it a single inheritance.

The below flow diagram shows that class B extends only one class which is A. Here A is a parent class

of B and B would be a child class of A.

JAVA

www.ourcreativeinfo.in

Single Inheritance example program in Java

class A

{

public void methodA()

{

System.out.println("Base class method");

}

}

Class B extends A

{

public void methodB()

{

System.out.println("Child class method");

}

}

class SingleInheritance

{

public static void main(String args[])

{

B obj = new B();

obj.methodA(); //calling super class method

obj.methodB(); //calling local method

}

}

Output

C:\Program Files\Java\jdk1.7.0\bin>javac SingleInheritance.java

C:\Program Files\Java\jdk1.7.0\bin>java SingleInheritance

Base class method

Child class method

JAVA

www.ourcreativeinfo.in

2) Multilevel Inheritance [2 Marks]

Multilevel inheritance The derived class inherits from one Base class, which intern inherits from some

other class is called multilevel inheritance in Java.

Multilevel Inheritance example program in Java

class A

{

void methodA()

{

System.out.println("Class A method");

}

}

class B extends A

{

void methodB()

{

System.out.println("Class B method");

}

}

class C extends B

{

void methodC()

{

System.out.println("Class C method");

}

}

JAVA

www.ourcreativeinfo.in

class MultilevelInheritance

{

public static void main(String args[])

{

C obj = new C();

obj.methodA(); //calling grand parent class method

obj.methodB(); //calling parent class method

obj.methodC(); //calling child class method
}

}

Output

C:\Program Files\Java\jdk1.7.0\bin>javac MultilevelInheritance.java

C:\Program Files\Java\jdk1.7.0\bin>java MultilevelInheritance Class A

method

Class B method

Class C method

3) Hierarchical Inheritance [2 Marks]

In such kind of inheritance one class is inherited by many sub classes. In below example class B,C and D

inherits the same class A. A is parent class (or base class) of B,C & D.

Parent class have two or more than two child class then we call it as Hierarchical Inheritance.

Hierarchical Inheritance example program in Java

class A

{

void methodA()

{

System.out.println("Class A method");

}

}

JAVA

www.ourcreativeinfo.in

class B extends A

{

void methodB()

{

System.out.println("Class B method");

}

}

class C extends A

{

void methodC()

{

System.out.println("Class C method");

}

}

class D extends A

{

void methodD()

{

System.out.println("Class D method");

}

}

class HierarchicalInheritance

{

public static void main(String args[])

{

B obj1 = new B();

C obj2 = new C();

D obj3 = new D();

obj1.methodA(); //calling Parent class methodA

obj1.methodB(); //calling Child class methodB

obj2.methodA(); //calling Parent class methodA

obj2.methodC(); //calling Child class methodC

obj3.methodA(); //calling Parent class methodA

obj3.methodD(); //calling Child class methodD

}

}

Output

C:\Program Files\Java\jdk1.7.0\bin>javac HierarchicalInheritance.java

C:\Program Files\Java\jdk1.7.0\bin>java HierarchicalInheritance Class A

method

Class B method

Class A method

Class C method

Class A method

Class D method

JAVA

www.ourcreativeinfo.in

4) Multiple Inheritance [2 Marks]

Why Java doesn’t support multiple inheritance?

C++ and few other languages supports multiple inheritance while java doesn’t support it. It is just to

remove ambiguity, because multiple inheritance can cause ambiguity in few scenarios. One of the most

common scenario is Diamond problem.

class Object is a Parent class of all the classes in java. So when you create a class the class Object is

automatically added in the program and diamond shape in multiple inheritance.

5) Hybrid Inheritance

In simple terms you can say that Hybrid inheritance is a combination of Single and Multiple inheritance.

A typical flow diagram would look like below. A hybrid inheritance can be achieved in the java in a same

way as multiple inheritance can be!! Using interfaces. yes you heard it right. By using interfaces you can

have multiple as well as hybrid inheritance in Java.

Does java supports hybrid inheritance?

Yes and No. If you are using only classes then this is not allowed in java, however using interfaces it’s

possible to have hybrid inheritance in java. We will see this in below example programs.

JAVA

www.ourcreativeinfo.in

Hierarchical inheritance and Hybrid inheritance are different?

Yes, Hierarchical inheritance is different than hybrid inheritance. Hierarchical inheritance is possible to

have in java even using the classes alone itself as in this type of inheritance two or more classes have the

same parent class or in other words a single parent class has two or more child classes, which is quite

possible to have in java.

Hybrid Inheritance example program in Java

class A

{

void methodA()

{

System.out.println("Class A methodA");

}

}

class B extends A

{

void methodA()

{

System.out.println("Child class B is overriding inherited method A");

}

void methodB()

{

System.out.println("Class B methodB");

}

}

class C extends A

{

void methodA()

{

System.out.println("Child class C is overriding the methodA");

}

JAVA

www.ourcreativeinfo.in

void methodC()

{

System.out.println("Class C methodC");

}

}

class D extends B, C

{

void methodD()

{

System.out.println("Class D methodD");

}

}

class HybridIneritance

{

public static void main(String args[])

{

D obj1= new D();

obj1.methodD();

obj1.methodA();
}

}

Output:

Error!!

Why? Most of the times you will find the following explanation of above error – Multiple inheritance is

not allowed in java so class D cannot extend two classes(B and C). But do you know why it’s not

allowed? Let’s look at the above code once again, In the above program class B and C both are extending

class A and they both have overridden the methodA(), which they can do as they have extended the class

A. But since both have different version of methodA(), compiler is confused which one to call when

there has been a call made to methodA() in child class D (child of both B and C, it’s object is allowed to

call their methods), this is a ambiguous situation and to avoid it, such kind of scenarios are not allowed in

java.

JAVA

www.ourcreativeinfo.in

METHOD OVERRIDING [5 Marks]

If subclass (child class) has the same method as declared in the parent class, it is known as method overriding

in java.

In other words, If subclass provides the specific implementation of the method that has been provided by

one of its parent class, it is known as method overriding.

Usage of Java Method Overriding

• Method overriding is used to provide specific implementation of a method that is already

provided by its super class.

• Method overriding is used for runtime polymorphism

Rules for Java Method Overriding

1. method must have same name as in the parent class

2. method must have same parameter as in the parent class.

3. must be IS-A relationship (inheritance).

Advantage of method overriding

The main advantage of method overriding is that the class can give its own specific implementation to a

inherited method without even modifying the parent class(base class).

Example program of Method Overriding

class Animal

{

void eat()

{

System.out.println("Animal is eating");

}

}

class Dog extends Animal

{

void eat()

{

System.out.println("Dog is eating");

}

}

JAVA

www.ourcreativeinfo.in

class Overriding

{

public static void main(String args[])

{

Dog d=new Dog();

d.eat();

}

}

Output

C:\Program Files\Java\jdk1.7.0\bin>javac Overriding.java

C:\Program Files\Java\jdk1.7.0\bin>java Overriding

Dog is eating

Real time example of Java Method Overriding

Consider a scenario, Bank is a class that provides functionality to get rate of interest. But, rate of interest

varies according to banks. For example, SBI, ICICI and AXIS banks could provide 8%, 7% and 9% rate of

interest.

class Bank

{

int getRateOfInterest()

{

return 0;

}

}

class SBI extends Bank

{

int getRateOfInterest()

{

return 8;

}

}

class ICICI extends Bank

{

int getRateOfInterest()

{

return 7;

}

}

JAVA

www.ourcreativeinfo.in

class AXIS extends Bank

{

int getRateOfInterest()

{

return 9;

}

}

class OverrideDemo

{

public static void main(String args[])

{

SBI s=new SBI();

ICICI i=new

ICICI(); AXIS

a=new AXIS();

System.out.println("SBI Rate of Interest: "+s.getRateOfInterest());

System.out.println("ICICI Rate of Interest: "+i.getRateOfInterest());

} System.out.println("AXIS Rate of Interest: "+a.getRateOfInterest());

}

Output

C:\Program Files\Java\jdk1.7.0\bin>javac OverrideDemo.java
C:\Program Files\Java\jdk1.7.0\bin>java OverrideDemo

SBI Rate of Interest: 8

ICICI Rate of Interest: 7

AXIS Rate of Interest: 9

JAVA

www.ourcreativeinfo.in

METHOD OVERRIDING IN DYNAMIC METHOD DISPATCH [5 Marks]

Dynamic method dispatch is a technique which enables us to assign the base class reference to a child class

object. As you can see in the below example that the base class reference is assigned to child class object.

Lab Program : 6

Program to demonstrate method overriding and dynamic dispatch.

class Base

{

void display()

{

System.out.println("I am in Base Class Display Method");

}

}

class Child extends Base

{

void display()

{

System.out.println("I am in Child Class Display Method");

}

}

class DynamicDispatch

{

public static void main(String args[])

{

Base obj=new Child();
obj.display();

}

}

Output

C:\Program Files\Java\jdk1.7.0\bin>javac DynamicDispatch.java

C:\Program Files\Java\jdk1.7.0\bin>java DynamicDispatch
I am in Child Class Display Method

JAVA

www.ourcreativeinfo.in

Another Example of Dynamic Dispatch

class Parent

{

void display1()

{

System.out.println("I am in Parent Class Display Method");

}

void display2()

{

System.out.println("I am in Parent Class Display2 Method");

}

}

class Child extends Parent

{

void display1()

{

System.out.println("I am in Child Class Display1 Method");

}

void disp()

{

System.out.println("I am in Child Class Disp Method");

}

}

class DynamicDisp

{

public static void main(String args[])

{

Parent obj = new Child(); //Parent class reference to child class object obj.display1();

obj.display2();

}

}

Output

C:\Program Files\Java\jdk1.7.0\bin>javac DynamicDisp.java

C:\Program Files\Java\jdk1.7.0\bin>java DynamicDisp

I am in Child Class Display1 Method

I am in Child Class Display2 Method

Note: In dynamic method dispatch the object can call the overriding methods of child class and all the

non-overridden methods of base class but it cannot call the methods which are newly declared in the child

class. In the above example the object obj was able to call the dispplay1()(overriding method) and

display2()(non-overridden method of base class). However if you try to call the disp() method (which has

been newly declared in Test class) [obj.disp()] then it would give compilation error with the following

message:

Exception in thread "main" java.lang.Error: Unresolved compilation

problem: The method disp() is undefined for the type Parent

JAVA

www.ourcreativeinfo.in

FINAL VARIABLES AND METHODS [2 or 5 Marks]

The final keyword in java is used to restrict the user. The java final keyword can be used in many context.

Final can be:

1. variable

2. method

3. class

All methods and variables can be overridden by default in subclasses. If we wish to prevent the subclasses

from overriding the superclass, we declare them as final using the keyword final

Ex- final int a=100;
Final void show();

Making a method final ensures that the functionality defined in this method will never be altered in any
way.

Final variable [2 Marks]

If you make any variable as final, you cannot change the value of final variable(It will be constant).

Example of final variable

There is a final variable speedlimit, we are going to change the value of this variable, but It can't be changed

because final variable once assigned a value can never be changed.

class Bike

{

final int speedlimit=90;//final variable void

run()
{

speedlimit=400;

}

}

class FinalVariable

{

public static void main(String args[])

{

}

}

Output

Bike obj=new Bike();

obj.run();

C:\Program Files\Java\jdk1.7.0\bin>javac FinalVariable.java

FinalVariable.java:6: error: cannot assign a value to final variable speedlimit

speedlimit=400;

^ 1

error

JAVA

www.ourcreativeinfo.in

Java final method [2 Marks]

If you make any method as final, you cannot override it.

class Bike

{

final void run()

{

System.out.println("running");

}

}

class Honda extends Bike

{

void run()

{

System.out.println("running safely with 100kmph");

}

}

class FinalMethod

{

public static void main(String args[])

{

Honda honda= new Honda();
honda.run();

}

}

Output

C:\Program Files\Java\jdk1.7.0_03\bin>javac Finalmethod.java

Finalmethod.java:11: error: run() in Honda cannot override run() in Bike

void run()

^

overridden method is final 1

error

JAVA

www.ourcreativeinfo.in

Java final class [2 Marks]

If you make any class as final, you cannot extend it.

final class Bike

{

}

class Honda extends Bike

{

void run()

{

}

}

System.out.println("running safely with 100kmph");

class FinalClass

{

public static void main(String args[])

{

Honda h= new Honda();

h.run();

}

}

Output

C:\Program Files\Java\jdk1.7.0_03\bin>javac FinalClass.java

FinalClass.java:6: error: cannot inherit from final Bike
class Honda extends Bike

^

1 error

Is final method inherited?

Yes, final method is inherited but you cannot override it

Example

class Bike

{

void run()

{

System.out.println("Running...");

}

}

JAVA

www.ourcreativeinfo.in

class Honda extends Bike

{

}

class FinalInheritance

{

public static void main(String args[])

{

Honda h= new Honda()
h.run();

}

}

Output

Running…

Can we declare a constructor final?

No, because constructor is never inherited.

JAVA

www.ourcreativeinfo.in

JAVA GARBAGE COLLECTION [2 Marks]

In java, garbage means unreferenced objects.

Garbage Collection is process of reclaiming the runtime unused memory automatically. In other words, it

is a way to destroy the unused objects.

To do so, we were using free() function in C language and delete() in C++. But, in java it is performed

automatically. So, java provides better memory management.

Advantage of Garbage Collection

• It makes java memory efficient because garbage collector removes the unreferenced objects from

heap memory.

• It is automatically done by the garbage collector(a part of JVM) so we don't need to make extra

efforts.

finalize() method [2 Marks]

The finalize() method is invoked each time before the object is garbage collected. This method can be used

to perform cleanup processing. This method is defined in Object class as:

1. protected void finalize(){}

Note: The Garbage collector of JVM collects only those objects that are created by new keyword.

So if you have created any object without new, you can use finalize method to perform cleanup

processing (destroying remaining objects).

gc() method

The gc() method is used to invoke the garbage collector to perform cleanup processing. The gc() is found

in System and Runtime classes.

1. public static void gc(){}

Note: Garbage collection is performed by a daemon thread called Garbage Collector(GC). This

thread calls the finalize() method before object is garbage collected.

JAVA

www.ourcreativeinfo.in

ABSTRACT METHODS AND CLASSES [2 or 5 or 10 Marks]

By making a method final we ensure that the method is not get inherited in subclass. But by making

method abstract we compulsory override it.

A class that is declared using “abstract” keyword is known as abstract class. It may or may not include

abstract methods which means in abstract class you can have concrete methods (methods with body) as well

along with abstract methods (without an implementation, without braces, and followed by a semicolon).

An abstract class can not be instantiated (you are not allowed to create object of Abstract class).

Abstract class declaration

Specifying abstract keyword before the class during declaration, makes it abstract. Have a look at

below code:

// Declaration using abstract keyword

abstract class AbstractDemo
{

// Concrete method: body and braces public
void myMethod()

{

//Statements here

}

// Abstract method: without body and braces

abstract public void anotherMethod();
}

Remember two rules:

1) If the class is having few abstract methods and few concrete methods: declare it as abstract class.

2) If the class is having only abstract methods: declare it as interface.

Note : Object creation of abstract class is not allowed Example

of Abstract Method

abstract class Demo1

{

public void disp1()

{

System.out.println("Concrete method of abstract class");

}

abstract void disp2();

}

JAVA

www.ourcreativeinfo.in

class Demo2 extends Demo1

{

/* I have given the body to abstract method of Demo1 class It is

must if you don't declare abstract method of super class

compiler would throw an error*/

void disp2()

{

System.out.println("I'm overriding abstract method");

}

}

class AbstractMethod

{

public static void main(String args[])

{

Demo2 obj = new Demo2();

obj.disp2();
}

}

Output

C:\Program Files\Java\jdk1.7.0\bin>javac AbstractMethod.java

C:\Program Files\Java\jdk1.7.0\bin>java AbstractMethod
I'm overriding abstract method

JAVA

www.ourcreativeinfo.in

ARRAYS [2 or 5 or 10 Marks]

Array is a collection of similar type of elements that have contiguous memory location.

Java array is an object the contains elements of similar data type. It is a data structure where we store

similar elements. We can store only fixed set of elements in a java array.

Array in java is index based, first element of the array is stored at 0 index.

Advantage of Java Array

• Code Optimization: It makes the code optimized, we can retrieve or sort the data easily.

• Random access: We can get any data located at any index position.

Disadvantage of Java Array

• Size Limit: We can store only fixed size of elements in the array. It doesn't grow its size at

runtime. To solve this problem, collection framework is used in java.

Types of Array in java

There are two types of array.

• One Dimensional Array

• Two Dimensional Array

• Multidimensional Array

JAVA

www.ourcreativeinfo.in

One Dimensional Array [10 Marks]

A list of items can be given one variable name using only one subscript and such a variable is called One

Dimensional Array.

Syntax :

Datatype ArrayName=new Datatype[size];

Example : int Array=new int[5];

The computer reserves five storage locations as shown below:

Array[0]

Array[1]

Array[2]

Array[3]

Array[4]

Creating an Array

Creation of array involves three steps :

1.Declaring the array.
2.Creating memory location.

3.Putting values into the memory location.

1. Declaration of Array

Array in java may be declared in three ways

1. dataType[] arr; (or)

2. dataType []arr; (or)

3. dataType arr[];

Example :

1. int [] number;

2. int []marks;

3. int students[];

Creation of Arrays

After declaring an array, we need to create it in the memory. Java allows us to create array using

new operator.

1 dataType[size] array=new dataType;

2 dataType [size]array=new dataType;

3 dataType array[size]=new dataType;

JAVA

www.ourcreativeinfo.in

Ex :

1 int[5] Array=new int;

2 int [5]Array=new int;

3 int Array[5]=new int;

Initialization of Arrays

The final step is to put values into the array created. This process is known as initialization.

Example :

Array[0]=10;

Array[1]=20;

Array[2]=30;

Array[3]=40;

Array[4]=50;

Declaration, Instantiation and Initialization of Java Array

We can declare, instantiate and initialize the java array together by:

1. int a[]={33,3,4,5}; //declaration, instantiation and initialization

Example of One Dimensional Array

class OneDimentional

{

public static void main(String args[])

{

int a[]=new int[5];//declaration and instantiation

a[0]=10;//initialization

a[1]=20;

a[2]=30;

a[3]=40;

a[4]=50;

for(int i=0;i<a.length;i++)

{

System.out.println(a[i]);

}

}

}

JAVA

www.ourcreativeinfo.in

C:\Program Files\Java\jdk1.7.0\bin>javac OneDimentional.java

C:\Program Files\Java\jdk1.7.0\bin>java OneDimentional

10

20

30

40

50

Program for Sorting a List of Numbers

import java.util.Scanner;

class SortingNumber
{

public static void main(String args[])

{

int A[]=new int[50];

Scanner scan=new Scanner(System.in);

System.out.println("Enter Array Size");

int n=scan.nextInt();

System.out.println("Enter Array Elements");

for(int i=0;i<n;i++)

{

A[i]=scan.nextInt();

}

for(int i=0;i<n;i++)

{

for(int j=i+1;j<n;j++)

{

if(A[i]>A[j])

{

int temp=A[i];

A[i]=A[j];
A[j]=temp;

}

}

}

System.out.println("The sorted array is ");
for(int i=0;i<n;i++)

{

System.out.println(A[i]);

}

System.out.println();

}

}

Output

C:\Program Files\Java\jdk1.7.0\bin>javac SortingNumber.java

C:\Program Files\Java\jdk1.7.0\bin>java SortingNumber Enter

Array Size

5

JAVA

www.ourcreativeinfo.in

Enter Array Elements

13 24 11 65 18

The sorted array is 11

13

18

24

65

Two Dimensional Arrays [10 Marks]

import java.util.Scanner;

class TwoDArray

{

public static void main(String args[])

{

int A[][]=new int[10][20];

Scanner scan=new Scanner(System.in);

System.out.println("Enter row and column");

int row=scan.nextInt();
int column=scan.nextInt();

System.out.println("Enter Array Elements"); for(int

i=0;i<row;i++)
{

for(int j=0;j<column;j++)

{

A[i][j]=scan.nextInt();

}

}

System.out.println("The Array Elements are ");

for(int i=0;i<row;i++)

{

for(int j=0;j<column;j++)

{

System.out.print(" "+A[i][j]);

}

System.out.println(" ");

}

}

}

JAVA

www.ourcreativeinfo.in

Output

C:\Program Files\Java\jdk1.7.0\bin>javac TwoDArray.java

C:\Program Files\Java\jdk1.7.0\bin>java TwoDArray Enter

row and column

2

2

Enter Array Elements

11

23

14

21

The Array Elements are

11 23

14 21

JAVA

www.ourcreativeinfo.in

STRING [2 Marks]

What is String in java

String is a sequence of characters. But in java, string is an object that represents a sequence of characters.

String class is used to create string object.

How to create String object? [2 Marks]

There are two ways to create String object:

1. By string literal

2. By new keyword

1) String Literal

Java String literal is created by using double quotes. For Example:

1. String s="welcome";

Each time you create a string literal, the JVM checks the string constant pool first. If the string already

exists in the pool, a reference to the pooled instance is returned. If string doesn't exist in the pool, a new

string instance is created and placed in the pool. For example:

1. String s1="Welcome";

2. String s2="Welcome";//will not create new instance

JAVA

www.ourcreativeinfo.in

In the above example only one object will be created. Firstly JVM will not find any string object with the

value "Welcome" in string constant pool, so it will create a new object. After that it will find the string

with the value "Welcome" in the pool, it will not create new object but will return the reference to the same

instance.

Note: String objects are stored in a special memory area known as string constant pool. Why

java uses concept of string literal?

To make Java more memory efficient (because no new objects are created if it exists already in string

constant pool).

2) By new keyword

1. String s=new String("Welcome");//creates two objects and one reference variable

In such case, JVM will create a new string object in normal(non pool) heap memory and the literal

"Welcome" will be placed in the string constant pool. The variable s will refer to the object in heap(non

pool).

Example

public class StringExample

{

public static void main(String args[])

{

String s1="java";//creating string by java string literal
char ch[]={'s','t','r','i','n','g','s'};

String s2=new String(ch);//converting char array to string

String s3=new String("example");//creating java string by new keyword

}

}

Output

java

strings

System.out.println(s1);

System.out.println(s2);

System.out.println(s3);

example

JAVA

www.ourcreativeinfo.in

Java String class methods [5 Marks]

The java.lang.String class provides many useful methods to perform operations on sequence of char

values.

JAVA

www.ourcreativeinfo.in

Lab 4 . Program to implement at least 10 string operations on Strings [10 Marks]

class StringDemo

{

public static void main(String args[])

{

String s1="Bachelor";
String s2="Of";

String s3="Computer";
String s4="Application";

}

}

Output

System.out.println(s1.toUpperCase());

System.out.println(s1.toLowerCase());

System.out.println(s3.concat(s4));

System.out.println(s4.length());

System.out.println(s1.charAt(2));

System.out.println(s1.indexOf('c'));

System.out.println(s2.replace('f','o'));

System.out.println(s1.substring(5));

System.out.println(s4.substring(0,3));

System.out.println(s1.compareTo(s4));

System.out.println(s1.equals(s2));

System.out.println(s4.startsWith("App"));

System.out.println(s1.endsWith("or"));

C:\Program Files\Java\jdk1.7.0\bin>javac StringDemo.java

C:\Program Files\Java\jdk1.7.0\bin>java StringDemo

BACHELOR

bachelor

ComputerApplication

11

c

2

Oo

lor

App

1

false

true

true

JAVA

www.ourcreativeinfo.in

DIFFERENCE BETWEEN STRING AND STRINGBUFFER [2 or 5 Marks]

There are many differences between String and StringBuffer. A list of differences between String and

StringBuffer are given below:

No. String StringBuffer

1) String class is immutable. StringBuffer class is mutable.

2)

String is slow and consumes more memory when you concat

too many strings because every time it creates new instance.

StringBuffer is fast and consumes less

memory when you cancat strings.

3)

String class overrides the equals() method of Object class. So

you can compare the contents of two strings by equals()

method.

StringBuffer class doesn't override the

equals() method of Object class.

JAVA

www.ourcreativeinfo.in

VECTORS IN JAVA [2 Marks]

Vector implements a dynamic array. It is similar to ArrayList, but with two differences −

• Vector is synchronized.

• Vector contains many legacy methods that are not part of the collections framework.

Vector proves to be very useful if you don't know the size of the array in advance or you just need one

that can change sizes over the lifetime of a program.

Wrapper class in Java [2 Marks]

Wrapper class in java provides the mechanism to convert primitive data types into object and object into

primitive data types.

Since J2SE 5.0, autoboxing and unboxing feature converts primitive into object and object into primitive

automatically. The automatic conversion of primitive into object is known as autoboxing and vice-versa

unboxing.

The eight classes of java.lang package are known as wrapper classes in java. The list of eight wrapper

classes are given below:

Primitive Type Wrapper class

boolean Boolean

Char Character

Byte Byte

Short Short

Int Integer

Long Long

Float Float

Double Double

Wrapper class Example: Primitive to Wrapper

public class WrapperExample1

{

public static void main(String args[])

{

//Converting int into Integer

int a=20;
Integer i=Integer.valueOf(a);//converting int into Integer

Integer j=a;//autoboxing, now compiler will write Integer.valueOf(a) internally

System.out.println(a+" "+i+" "+j);

}

}

Output:

20 20 20

JAVA

www.ourcreativeinfo.in

Wrapper class Example: Wrapper to Primitive

Wrapper class Example: Wrapper to Primitive

public class WrapperExample2

{

public static void main(String args[])

{

}

}

Output:

3 3 3

//Converting Integer to int
Integer a=new Integer(3);

int i=a.intValue();//converting Integer to int

int j=a;//unboxing, now compiler will write a.intValue() internally

System.out.println(a+" "+i+" "+j);

