
Design Analysis Of Algorithms

UNIT - 1

Introduction To Algorithm

1. Define algorithm?

An Algorithm is a finite sequence of instructions, each of which has a clear

meaning and can be performed with a finite amount of effort in a finite length of

time.

2. List and explain characteristics of algorithm?

1. Input: There are zero or more quantities, which are externally supplied.

2. Output: At least one quantity is produced..

3. Definiteness: Each instruction must be clear and unambiguous.

4. Finiteness: If we trace out the instructions of an algorithm, then for all

cases the algorithm will terminate after a finite number of steps;

5. Effectiveness: Every instruction must be basic so that it can be carried

out by a person using only pencil and paper.

3. Define debugging?

Debugging is the process of executing programs on sample data sets to determine

whether faulty results occur.

4. Define pseudocode?

Pseudo code is compact and informal high level description of Program.

5. Write algorithm to find and return the sum of given numbers in array?

Algorithm Sum(a, n) {

s := 0.0;

for i := 1 to n do

 s := s+ a[i];

return s;

}

6. Define space complexity?

The space complexity of an algorithm is the amount of memory it needs to run to

completion of Algorithm.

Space for simple variable and fixed size variable is known as aggregate.

7. Define time complexity?

The time complexity of an algorithm is the amount of computer time it needs to

run to completion of Algorithm.

8. Explain asymptotic notations?

The value of the function increase or decrease as the n value increase. The

asymptotic behavior of a function is the study of how the value of a function

varies for large value of n of where n is the size of the input.

 Worst-case:

f (n) defined by the maximum number of steps taken on any instance of

size n.

 Best-case:

f (n) defined by the minimum number of steps taken on any instance of

size n.

 Average case:

f (n) defined by the average number of steps taken on any instance of

size n.

UNIT - 2

Design And Analysis Of Algorithms

1. Define recurrence relation?

A recurrence relation is an equation that defines a sequence based on a rule that

gives the next term as a function of the previous term(s).

2. Define asymptotic notation and list its types?

Asymptotic notation is a notation, which is used to take meaningful statement

about the efficiency of a program.

Types -

 O - Big oh notation

 Ω - Big omega notation

 Θ - Big theta notation

3. Explain the asymptotic notations?

1. O - Big oh notation :

Big-O notation represents the upper bound of the running time of an

algorithm. It gives the worst-case complexity of an algorithm.

It specifies the upper bound of a function.The maximum time required by

an algorithm or the worst-case time complexity.

A function t(n) is said to be in O(g(n)), if t(n) is bounded above by some

constant multiple of g(n) for all large n, i.e if there exist some positive

constant c and some nonnegative integer n0 such that,

 t(n) <= c.g(n) for all n >= n0

 Where t(n) and g(n) are non-negative functions defined on the set of

natural numbers.

 O = Asymptotic upper bound = Usefull for worst-case analysis =

Loose bound

2. Ω - Big omega notation :

 Omega notation represents the lower bound of the running time of

an algorithm. It provides the best case complexity of an algorithm.

 The execution time serves as a lower bound on the algorithm’s time

complexity.

 It is defined as the condition that allows an algorithm to complete

statement execution in the shortest amount of time.

A function t(n) is said to be in Ω(g(n)), if t(n) is bounded below by some

constant multiple of g(n) for all large n, i.e if there exist some positive

constant c and some nonnegative integer n0 such that,

 t(n) >= c.g(n) for all n >= n0

 Where t(n) and g(n) are non-negative functions defined on the set of

natural numbers.

 Ω= Asymptotic upper bound = Usefull for best-case analysis = Loose

bound

3. Θ - Big theta notation :

 Theta notation represents the upper and the lower bound of the running

time of an algorithm, it is used for analyzing the average-case complexity of

an algorithm.

A function t(n) is said to be in Θ(g(n)), if t(n) is bounded both above and

below by some constant multiple of g(n) for all large n, i.e if there exist

some positive constant c1 and c2 and some nonnegative integer n0 such

that,

 c2g(n) <= t(n) <= c1g(n) for all n >= n0

 Where t(n) and g(n) are non-negative functions defined on the set of

natural numbers.

 Ω= Asymptotic tight bound = Usefull for average-case analysis

4. Define recursive algorithm?

A recursive algorithm calls itself with smaller input values and returns the result

for the current input by carrying out basic operations on the returned value for

the smaller input.

5. List the basic asymptotic efficiency classess?

6. Give general plan for non-recursive algorithms?

 Decide on parameter indicating an input’s size.

 Identify the algorithm’s basic operation

 Checking the no. of times basic operation executed depends on size of

input. If it depends on some additional property, then best, worst, avg.

cases need to be investigated

 Set up sum expressing the no. of times the basic operation is executed.

(establishing order of growth).

7. Give general plan for recursive algorithms?

 Decide on parameter indicating an input’s size.

 Identify the algorithm’s basic operation

 Checking the no. of times basic operation executed depends on size of

input. If it depends on some additional property, then best, worst, avg.

cases need to be investigated

 Set up the recurrence relation, with an appropriate initial condition, for the

number of times the basic operation is executed

 Solve recurrence (establishing order of growth)

8. Write algorithm to find the number of binary digits in the binary

representation of a positive decimal integer?

Algorithm Binary(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n’s binary representation

count ←1

while n > 1 do

 count ← count + 1

 n←[n/2]

return count

9. Define algorithm validation?

The process of measuring the effectiveness of the algorithm before actually

making program or code from it, in order to know whether the algorithm is

correct for valid input is known as algorithm validation.

10. Write the algorithm to find the largest element in a given array?

ALGORITHM -

MaxElement(A[0..n − 1])

//Determines the value of the largest element in a given array

//Input: An array A[0..n − 1] of real numbers

//Output: The value of the largest element in A maxval ← A[0]

for i ← 1 to n − 1 do

if A[i] > maxval

maxval ← A[i]

return maxval

11. Write the algorithm to check whether all the elements in a given array are

distinct?

Algorithm -

UniqueElements(A{0...n-1)

// Determine whether all the elements in a give are distinct

//Input - An array A[0..n-1]

//Output - Returns true if all the elements in A are distinct otherwise returns false.

for i <- 0 to n-2 do

 for j <- i + 1 to n-1 do

 if A[i] == A[j]

 return false

return true

12. Write a recursive algorithm to find number of binary digits in a given decimal

integer?

Algorithm -

BinRec(n)

//Input - A positive integer n

//Output - The number of binary digits in n's binary representation

if n == 1 return 1

else return BinRec([n/2] + 1)

UNIT - 3

Brute Force & Exhaustive Search

1. Define Brute Force approach? List its advantages.

Brute force is an intuitive, direct, and straight forward technique of

problem-solving in which all the possible ways or all the possible solutions to a

given problem are enumerated.

 Brute force is applicable to a very wide variety of problems.

 It is very useful for solving small size instances of a problem, even though it

is inefficient.

 The brute-force approach yields reasonable algorithms of at least some

practical value with no limitation on instance size for sorting, searching, and

string matching.

2. Define selection sort and write a program to sort elements in array using

selection sort?

Selection sort is a simple and efficient sorting algorithm that works by repeatedly

selecting the smallest (or largest) element from the unsorted portion of the list

and moving it to the sorted portion of the list.

Algorithm -

SelectionSort(A[0...n-1])

//Sorts a given array by selection sort

//Input - An array A[0...n-1] of orderable elements

//Output - Array A[0...n-1] sorted in nondescreasing order

for i <- 0 to n-2 do

 min <- i

 for j <- i +1 to n - 1 do

 if A[i] < A[min]

 min <- j

 swap A[i] and A[min]

3. Define bubble sort & write a program to sort elements in array using bubble

sort?

 Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping

the adjacent elements if they are in the wrong order. This algorithm is not suitable

for large data sets as its average and worst-case time complexity is quite high.

Algorithm -

BubbleSort(A[0...n-1])

//Sort a given array by bubble sort

//Input - An array A[0...n-1] of orderable elements

//Output - Array A[0...n-1] sorted in nondecreasing order

for i <- 0 to n-2 do

 for j <- 0 to n-2-i do

 if A[j+1] < A[j]

 swap A[j] and A[j+1]

4. Define sequential search?

Sequential search is the algorithm that starts at one end and goes through each

element of a list until the desired element is found, otherwise the search

continues till the end of the data set.

5. Define exhaustive search?

Exhaustive Search is a brute-force algorithm that systematically enumerates all

possible solutions to a problem and checks each one to see if it is a valid

solution.

6. Explain the travelling salesman problem?

algorithm

7. Explain Knapsack problem?

algorithm

8. Define a graph? List its types.

A graph is a collection of nodes (also called vertices) and edges (also called ores or

links) each connecting a pair of nodes.

Types -

1. Directed Graph :

Directed graph is a graph which consists of directed edges where each edge

in E is unidirectional.

2. Undirected Graph :

An undirected graph is a graph, which consists of undirected edges.

9. Define connected graph?

An directed graph is said to be connected if for every pair of distinct vertices V1

and V2 in V(G) there is a graph from Vi to Vj in G.

10. Define complete graph?

If an undirected graph of n vertices consists of n(n-1)/2 number of edges it is

called as complete graph.

11. Define Cycle?

A cycle in a graph is a path in which first and last vertex are the same.

12. Define Acyclic graph?

A directed graph is said to be acyclic when there is no cycle path in it. It is also

called as DAG(Directed Acyclic Graph).

13. Explain Depth First Search(DFS)?

DFS is a recursive algorithm to search all the vertices of a tree data structure or

a graph. The depth-first search (DFS) algorithm starts with the initial node of graph

G and goes deeper until we find the goal node or the node with no children.

Algorithm -

DFS (G)

//Implements DFS traversal of a given graph

//Input : Graph G = { V, E}

//Output: DFS tree

//Mark each vertex in V with 0 as a mark of being “unvisited” count 0

for each vertex v in V do

 if v is marked with 0

 dfs(v)

 dfs(v)

count count + 1

mark v with count

for each vertex w in V adjacent to v do

 if w is marked with 0

 dfs(w)

14. Explain Breadth First Search(BFS)?

The Breadth First Search (BFS) algorithm is used to search a graph data structure

for a node that meets a set of criteria. It starts at the root of the graph and visits

all nodes at the current depth level before moving on to the nodes at the next

depth level.

Applications of BFS -

 To check connectivity of a graph (number of times queue becomes empty

tells the number of components in the graph)

 To check if a graph is acyclic. (no cross edges indicates no cycle)

 To find minimum edge path in a graph

Algorithm -

//implements BFS traversal of a given graph

//input: Graph G = { V, E}

//output: BFS tree/forest

//Mark each vertex in V with 0 as a mark of being “unvisited”

count 0

for each vertex v in V do

 if v is marked with 0

 bfs(v)

 bfs(v)

 count count + 1

UNIT - 4

Decrease And Conquer

Divide And Conquer

1. What is decrease and conquer? List its advantages and disadvantages

Decrease and conquer is a technique used to solve problems by reducing the size

of the input data at each step of the solution process.

This technique is similar to divide-and-conquer, in that it breaks down a problem

into smaller subproblems, but the difference is that in decrease-and-conquer, the

size of the input data is reduced at each step.

Advantages -

 Simplicity

 Efficient algorithms

 Problem-specific

Disadvantages -

 Problem specific

 Implementation complexity

2. Whhat is insertion sort? Write algorithm and advantages

To sort an array of size N in ascending order iterate over the array and compare

the current element (key) to its predecessor, if the key element is smaller than its

predecessor, compare it to the elements before. Move the greater elements one

position up to make space for the swapped element

Algorithm -

Insertionsort(A[0 ... n-1]) {

 //Sorts a given array by insertion sort

 //Input - Array A[0 ... n-1]

 //Output - Sorted array A[0 ... n-1] in ascending order

 for i <- to n-1:

 v <- A[i]

 j <- i-1

 while j >= 0 AND A[j] > V do:

 A[j+1] <- A[j]

 j <- j - 1

 A[j+1] <- V

}

Advantages -

 Simple implementation

 Efficient on small list of elements, on almost sorted list

 Running time is linear in best case

 It is a stable algorithm.

 It is a in-place algorithm.

Time complexity -

 Worst case - O(N^2)

 Average case - O(N^2)

 Best case - O(N)

3. Define topological sorting? Write algorithm and advantages

A topological sort or topological ordering of a directed graph is a linear ordering

of its vertices in which u occurs before v in the ordering for every directed edge uv

from vertex u to vertex v.

Algorithm -

 Create a stack to store the nodes.

 Initialize visited array of size N to keep the record of visited nodes.

 Run a loop from 0 till N :

 if the node is not marked True in visited array then call the

recursive function for topological sort and perform the following

steps:

 Mark the current node as True in the visited array.

 Run a loop on all the nodes which has a directed edge to the current

node

 if the node is not marked True in the visited array:

 Recursively call the topological sort function on the node

 Push the current node in the stack.

 Print all the elements in the stack.

Applications of topological sorting -

 Task scheduling

 Software dependency resolution

 Building makefiles

 Compiler optimization

 Dependency analysis

4. What is divide and conquer? Give general plan for divide and conquer

Divide and conquer algorithm works by recursively breaking down a problem into

two or more sub-problems of the same (or related) type (divide), until these

become simple enough to be solved directly (conquer).

General plan -

 A problem is divided into several subproblems of the same type, ideally of

about equal size.

 The subproblems are solved (typically recursively, though sometimes a

different algorithm is employed, especially when subproblems become

small enough).

 If necessary, the solutions to the subproblems are combined to get a

solution to the original problem.

5. Write an algorithm for finding the maximum and minimum?

Algorithm -

StraightMaxMin(a, n, max, min)

//Input: Array a[1..n]

//Output: Maximum (max) and minimum (min) values in the array

max := a[1] // Set max to the first element

min := a[1] // Set min to the first element

for i := 2 to n do:

 if (a[i] > max) then:

 max := a[i] // Update max if a[i] is greater

 else

 if (a[i] < min) then

 min := a[i] // Update min if a[i] is smaller

6. What is merge sort? Write its algorithm , advantages and disadvantages

Merge sort is defined as a sorting algorithm that SORT works by dividing an array

into smaller subarrays, sorting each subarray, and then merging the sorted

subarrays back together to form the final sorted array.

Algorithm -

MERGE_SORT(arr, low, end)

if low < end

set mid = (low + end)/2

MERGE_SORT(arr, low, mid)

MERGE_SORT(arr, mid + 1, end)

MERGE (arr, low, mid, end)

end of if

END MERGE_SORT

Advantages of merge sort -

 Stability

 Guaranteed worst-case performance

 Parallelizable

Disadvantages of merge sort -

 Space complexity

 Not in place

 Not always optimal for small datasets

7. Define Quick sort? Write its algorithm and advantages

QuickSort is a sorting algorithm based on the Divide and Conquer algorithm that

picks an element as a pivot and partitions the given array around the picked pivot

by placing the pivot in its correct position in the sorted array.

Algorithm -

QUICKSORT (array A, start, end)

{

 if (start < end)

 {

p = partition(A, start, end)

QUICKSORT (A, start, p - 1)

QUICKSORT (A, p + 1, end)

}

}

PARTITION (array A, start, end) {

 pivot = A[end]

 i = start-1

 for j = start to end -1 do{

 if (A[j] < pivot) {

 then i = i + 1

 swap A[i] with A[j]

 }}

 swap A[i+1] with A[end]

 return i+1

}

Time Complexity -

 Best case - O(n*logn)

 Average case - O(n*logn)

 Worst case - O(n2)

8. List advantages and disadvantages of divide and conquer?

Advantages -

 Parallelism - Divide and conquer algorithms tend to have a lot of inherent

parallelism.

 Cache performance - Divide and conquer algorithms also tend to have good

cache performance.

Disadvantages -

 Sometimes it can become more complicated than a basic iterative

approach.

 Recursion is slow, which in some cases outweighs any advantages of this

divide and conquer process.

9. Define binary search? Write its algorithm

Binary Search is defined as a searching algorithm used in a sorted array by

repeatedly dividing the search interval in half. The idea of binary search is to use

the information that the array is sorted and reduce the time complexity to O(log

N).

Algorithm -

BinarySearch(A[0 .. n-1], K) {

//Implementation nonrecursive binary search

//Input - An array A[0 .. n-1] sorted in ascending order and a search key K

//Output - An index of the array's element that is equal to K or -1 if there is no such

elements

i <- 0, l <- 0, r<-n-1;

while(i <= r) do:

 m <- (l+r)/2

 if k = A[m]

 return m

 else if K < A[m]

 r <- m-1

 else l <- m+1

return -1;

10. Define Traversal?

Traversal is a technique for visiting all of a tree's nodes and printing their values.

11. List and explain Types of Binary tree traversals ?

1. Inorder Tree Traversal -

The left subtree is visited first, followed by the root, and finally the right

subtree in this traversal strategy.

Algorithm -

inorder(t){

// t is a binary tree. Each node of t has three fields. lchild, data, and rchild.

if(t != 0) then

 inorder(t -> lchild);

 inorder(t->data);

 inorder(t -> rchild);

}

2. Preorder Tree Traversal-

In this traversal method, the root node is visited first, then the left subtree,

and finally the right subtree.

Algorithm -

preorder(t){

// t is a binary tree. Each node of t has three fields. lchild, data, and rchild.

if(t != 0) then

 preorder(t->data);

 preorder(t -> lchild);

 preorder(t -> rchild);

}

3. Postorder Tree Traversal -

The root node is visited last in this traversal method, hence the name. First, we

traverse the left subtree, then the right subtree, and finally the root node.

Algorithm -

postorder(t){

// t is a binary tree. Each node of t has three fields. lchild, data, and rchild.

if(t != 0) then

 postorder(t -> lchild);

 postorder(t -> rchild);

 postorder(t->data);

}

12. Write algorithm to find the height of binary tree ?

Algorithm -

 Height(t) {

 //Computes recursively the height of a binary tree

 //Input - A binary tree T

 //Output - The height of T

 if(t = 0) return -1;

 else return max(Height(T1), Height(Tk)) +1 ;

 }

UNIT - 5

Greedy Techniques

1. Prims Algorithm ?

Prim's Algorithm is a greedy algorithm that is used to find the minimum spanning

tree from a graph. Prim's algorithm finds the subset of edges that includes every

vertex of the graph such that the sum of the weights of the edges can be

minimized.

Prim's algorithm starts with the single node and explores all the adjacent nodes

with all the connecting edges at every step. The edges with the minimal weights

causing no cycles in the graph got selected.

How the prims algorithm works?

 First, we have to initialize an MST with the randomly chosen vertex.

 Now, we have to find all the edges that connect the tree in the above

step with the new vertices. From the edges found, select the minimum

edge and add it to the tree.

 Repeat step 2 until the minimum spanning tree is formed.

Applications of prim's algorithm are -

 Prim's algorithm can be used in network designing.

 It can be used to make network cycles.

 It can also be used to lay down electrical wiring cables.

Algorithm -

Step 1: Select a starting vertex

Step 2: Repeat Steps 3 and 4 until there are fringe vertices

Step 3: Select an edge 'e' connecting the tree vertex and fringe vertex that

has minimum weight

Step 4: Add the selected edge and the vertex to the minimum spanning tree

T

[END OF LOOP]

Step 5: EXIT

2. Kruskals Algorithm ?

Kruskal's Algorithm is used to find the minimum spanning tree for a connected

weighted graph. The main target of the algorithm is to find the subset of edges by

using which we can traverse every vertex of the graph.

It follows the greedy approach that finds an optimum solution at every stage

instead of focusing on a global optimum.

How the Kruskal's algorithm works?

 First, sort all the edges from low weight to high.

 Now, take the edge with the lowest weight and add it to the spanning

tree. If the edge to be added creates a cycle, then reject the edge.

 Continue to add the edges until we reach all vertices, and a minimum

spanning tree is created.

Applications of Kruskal's algorithm are -

 Kruskal's algorithm can be used to layout electrical wiring among cities.

 It can be used to lay down LAN connections.

Algorithm -

Step 1: Create a forest F in such a way that every vertex of the graph is a

separate tree.

Step 2: Create a set E that contains all the edges of the graph.

Step 3: Repeat Steps 4 and 5 while E is NOT EMPTY and F is not spanning

Step 4: Remove an edge from E with minimum weight

Step 5:

IF the edge obtained in Step 4 connects two different trees, then add

it to the forest F (for combining two trees into one tree).

ELSE

Discard the edge

Step 6: END

3. Dijkstra's Algorithm ?

Dijkstra's Algorithm is a Graph algorithm that finds the shortest path from a

source vertex to all other vertices in the Graph (single source shortest path).

It is a type of Greedy Algorithm that only works on Weighted Graphs having

positive weights.

The time complexity of Dijkstra's Algorithm is O(V2) with the help of the adjacency

matrix representation of the graph

How the Dijkstra algorithm works?

Step 1:

First, we will mark the source node with a current distance of 0 and set the

rest of the nodes to INFINITY.

Step 2:

We will then set the unvisited node with the smallest current distance as

the current node, suppose X.

Step 3:

For each neighbor N of the current node X: We will then add the current

distance of X with the weight of the edge joining X-N. If it is smaller than the

current distance of N, set it as the new current distance of N.

Step 4:

We will then mark the current node X as visited.

Step 5:

We will repeat the process from 'Step 2' if there is any node unvisited left in

the graph.

Algorithm or Pseudocode for Dijkstra -

function Dijkstra_Algorithm(Graph, source_node)

 for each node N in Graph:

 distance[N] = INFINITY

 previous[N] = NULL

 If N != source_node, add N to Priority Queue G

 distance[source_node] = 0

 while G is NOT empty:

 Q = node in G with the least distance[]

 mark Q visited

for each unvisited neighbor node N of Q:

 temporary_distance = distance[Q] +

distance_between(Q, N)

if temporary_distance < distance[N]

 distance[N] := temporary_distance

 previous[N] := Q

// returning the final list of distance

return distance[], previous[]

4. Define spanning tree?

A spanning tree is the subgraph of an undirected connected graph.

5. Define minimum spanning tree?

Minimum spanning tree can be defined as the spanning tree in which the sum of

the weights of the edge is minimum.

