
 www.ourcreativeinfo.in

The Greedy method

General method:

It is the process of making local optimal choice at every stage to get the

global optimal solution

 It is used for solving optimization problem. Given n inputs choose a

subset that satisfies some constraints.

❖ A subset that satisfies the constraints is called a feasible solution.

❖ A feasible solution that maximises or minimizes a given (objective) function

is said to be optimal.

Note: Often it is easy to find a feasible solution but difficult to find the optimal solution.

The greedy method suggests that one can devise an algorithm that works in stage. At

each stage a decision is made whether a particular input is in the optimal solution. This

is called subset paradigm.

1 Example: Your Train breaks down in a desert and you decide to walk to nearest town.

You have a rucksack but which objects should you take with you?

Feasible: Any set of objects is a feasible solution provided that they are not too heavy,

fit in the rucksack and will help you survive (these are constraints).

An optimal solution is the one that maximizes or minimises something – One that

minimises the weight carried

– One that fills the rucksack completely (maximise)

– One that ensures the most water is taken etc.

2 Example: You are writing a computer game and need to store your .wav, .jpg, and

.mpg files on a set of CD-roms. The constraint is the length of files and the size of the

CD (capacity) A feasible solution is any combination that fits.

An optimal one is the order that minimises the access time for each file.

– In this case you will have the minimum delay for the player.

– Hence you might sell more games.

– Have smoother game action.

 www.ourcreativeinfo.in

Control Abstraction for Greedy algorithm

Algorithm Greedy(A : set; n : integer)

 {

 MakeEmpty(solution);

for(i = 2; i <= n; i++)

 {

 x = Select(A);

 if Feasible(solution; x) then

 solution = Union(solution; {x})

 }

 return solution

 }

The function Greedy describes the essential way that a greedy algorithm will look, once

a particular problem is chosen and the functions Select, Feasible and Union are properly

implemented. The function Select selects an input from A

whose value is assign to x. Feasible is a Boolean valued function that determines if x can

be included into the solution vector. The function Union combines x with the solution,

and update the objective function.

❖ Spanning tree: Let G = (V;E) be an undirected connected graph. A subgraph

T = (V;G) of G is a spanning tree of G if T is a tree with minimum possible number of

edges.

e.g. three spanning trees of G.

 – Both T and G have same set of vertices V .

– T is connected but has no cycles.

– has (n − 1) edges.(min edges)

 www.ourcreativeinfo.in

In practical applications, the edges have weights assigned to them, which may

represent the cost of constructions, the length of link, etc.

Applications:

• CN Network Routing Protocol

• Cluster Analysis

• Civil Network Planning

❖ Minimum Spanning Tree (MST):

 Given a connected weighted graph G, we wish to find a set of edges with minimum

(sum) weights such that all vertices are connected.

Feasible solution – The spanning trees T = (V;E) represent feasible choices

Optimal solution – The spanning tree Top t = (V;E) with the lowest total cost of edges

is the one we want.

Since the identification of a minimum cost spanning tree involves the selection of a

subset of edges, this problem fits the subset paradigm.

MST example

 www.ourcreativeinfo.in

❖ Solution Space: is an set of all possible points (set of values of the choice) of an

OPTIMIZATION problem that satisfy the problem constraints, potentially

including inequalities, equalities and integer constraints . it is a process of

backtracking.

❖ Principal of Optimality : “An optimal policy has the property that whatever

the initial state and the initial decisions it must constitute an optimal policy with

regards to the state resulting from the first decision.”

Introduction to Prim’s algorithm:

• This algorithm always starts with a single node and moves through several

adjacent nodes, in order to explore all of the connected edges along the way.

• The algorithm starts with an empty spanning tree. The idea is to maintain two sets

of vertices.

• The first set contains the vertices already included in the MST, and the other set

contains the vertices not yet included. At every step, it considers all the edges that

connect the two sets and picks the minimum weight edge from these edges.

• After picking the edge, it moves the other endpoint of the edge to the set containing

MST.

• at every step of Prim’s algorithm, find a cut, pick the minimum weight edge from

the cut, and include this vertex in MST Set (the set that contains already included

vertices).

 www.ourcreativeinfo.in

1. How does Prim’s Algorithm Work?
The working of Prim’s algorithm can be described by using the following steps:

Step 1: Determine an arbitrary vertex as the starting vertex of the MST.

Step 2: Follow steps 3 to 5 till there are vertices that are not included in the

MST (known as fringe vertex).

Step 3: Find edges connecting any tree vertex with the fringe vertices.

Step 4: Find the minimum among these edges.

Step 5: Add the chosen edge to the MST if it does not form any cycle.

Step 6: Return the MST and exit

Note: For determining a cycle, we can divide the vertices into two sets [one set

contains the vertices included in MST and the other contains the fringe vertices.]

Illustration of Prim’s Algorithm:
Consider the following graph as an example for which we need to find the Minimum

Spanning Tree (MST).

Example of a graph

Step 1: Firstly, we select an arbitrary vertex that acts as the starting vertex of the

Minimum Spanning Tree. Here we have selected vertex 0 as the starting vertex.

 www.ourcreativeinfo.in

0 is selected as starting vertex

Step 2: All the edges connecting the incomplete MST and other vertices are the edges

{0, 1} and {0, 7}. Between these two the edge with minimum weight is {0, 1}. So include

the edge and vertex 1 in the MST.

1 is added to the MST

Step 3: The edges connecting the incomplete MST to other vertices are {0, 7},

 www.ourcreativeinfo.in

{1, 7} and {1, 2}. Among these edges the minimum weight is 8 which is of the edges

{0, 7} and {1, 2}. Let us here include the edge {0, 7} and the vertex 7 in the MST.

[We could have also included edge {1, 2} and vertex 2 in the MST].

7 is added in the MST

Step 4: The edges that connect the incomplete MST with the fringe vertices are

{1, 2}, {7, 6} and {7, 8}. Add the edge {7, 6} and the vertex 6 in the MST as it has the

least weight (i.e., 1).

6 is added in the MST

 www.ourcreativeinfo.in

Step 5: The connecting edges now are {7, 8}, {1, 2}, {6, 8} and {6, 5}. Include edge

{6, 5} and vertex 5 in the MST as the edge has the minimum weight (i.e., 2) among

them.

Include vertex 5 in the MST

Step 6: Among the current connecting edges, the edge {5, 2} has the minimum

weight. So include that edge and the vertex 2 in the MST.

Include vertex 2 in the MST

 www.ourcreativeinfo.in

Step 7: The connecting edges between the incomplete MST and the other edges are

{2, 8}, {2, 3}, {5, 3} and {5, 4}. The edge with minimum weight is edge

{2, 8} which has weight 2. So include this edge and the vertex 8 in the MST.

Add vertex 8 in the MST

Step 8: See here that the edges {7, 8} and {2, 3} both have same weight which are

minimum. But 7 is already part of MST. So we will consider the edge {2, 3} and

include that edge and vertex 3 in the MST.

Include vertex 3 in MST

 www.ourcreativeinfo.in

Step 9: Only the vertex 4 remains to be included. The minimum weighted edge from

the incomplete MST to 4 is {3, 4}.

Include vertex 4 in the MST

The final structure of the MST is as follows and the weight of the edges of the MST

is (4 + 8 + 1 + 2 + 4 + 2 + 7 + 9) = 37.

The structure of the MST formed using the above method

Note: If we had selected the edge {1, 2} in the third step then the MST would look

like the following.

 www.ourcreativeinfo.in

Structure of the alternate MST if we had selected edge {1, 2} in the MST

How to implement Prim’s Algorithm?

Follow the given steps to utilize the Prim’s Algorithm mentioned above for

finding MST of a graph:

• Create a set mstSet that keeps track of vertices already included in MST.

• Assign a key value to all vertices in the input graph. Initialize all key values

as INFINITE. Assign the key value as 0 for the first vertex so that it is picked

first.

• While mstSet doesn’t include all vertices

• Pick a vertex u that is not there in mstSet and has a minimum key

value.

• Include u in the mstSet.

• Update the key value of all adjacent vertices of u. To update the

key values, iterate through all adjacent vertices.

• For every adjacent vertex v, if the weight of edge u-v is

less than the previous key value of v, update the key

value as the weight of u-v.

ALGORITHM Prim(G)

 www.ourcreativeinfo.in

//Prim’s algorithm for constructing a minimum

spanning tree

//Input: A weighted connected graph G = V,E

//Output: minimum spanning tree T of G

T ← {0} //the set of tree vertices can be initialized with U U

← {1}

for i ← 1 to |V | − 1 do

 let (u,v) be the lowest cost edge such that

 u€U and v € V-U

 T ← T 𝖴 {(u,v)} // union add edge to spanning tree

 U ← U 𝖴 {v}

Return T

End Prim

Other Examples for Practice:

 www.ourcreativeinfo.in

 www.ourcreativeinfo.in

2. Introduction to Kruskal’s Algorithm:
Here we will discuss Kruskal’s algorithm to find the MST of a given weighted

graph.

In Kruskal’s algorithm, sort all edges of the given graph in increasing order. Then it keeps

on adding new edges and nodes in the MST if the newly added edge does not form a cycle.

It picks the minimum weighted edge at first and the maximum weighted edge at last. Thus

we can say that it makes a locally optimal choice in each step in order to find the optimal

solution. Hence this is a Greedy Algorithm.

How to find MST using Kruskal’s algorithm?
Below are the steps for finding MST using Kruskal’s algorithm:

1. Sort all the edges in non-decreasing order of their weight.

2. Pick the smallest edge. Check if it forms a cycle with the spanning tree

formed so far. If the cycle is not formed, include this edge. Else, discard it.

3. Repeat step#2 until there are (V-1) edges in the spanning tree.

ALGORITHM Kruskal(G)

https://www.geeksforgeeks.org/introduction-to-greedy-algorithm-data-structures-and-algorithm-tutorials/

 www.ourcreativeinfo.in

//Kruskal’s algorithm for constructing a minimum spanning tree

//Input: A weighted connected graph G = V, E

//Output: minimum spanning tree of G

T ← ∅;

 ecounter ← |V | − 1 //initialize the set of tree edges and its size

while T ≠ n-1 and ecounter ≠0 do

 k ← k + 1

if (u, v) does not form a cycle

 T ← T 𝖴 {u, v} // add (u, v) into T

 Delete (u, v) from min heap

 ecounter ← ecounter + 1

return T

end Kruskal

 www.ourcreativeinfo.in

Illustration:

Below is the illustration of the above approach:

Input Graph:

The graph contains 9 vertices and 14 edges. So, the minimum spanning tree formed will

be having (9 – 1) = 8 edges.

After sorting:

Weight Source Destination

7 2 3

7 7 8

8 0 7

8 1 2

9 3 4

10 5 4

11 1 7

14 3 5

Weight Source Destination

 1 7 6

2 8 2

2 6 5

4 0 1

4 2 5

6 8 6

 www.ourcreativeinfo.in

Now pick all edges one by one from the sorted list of edges

Step 1: Pick edge 7-6. No cycle is formed, include it.

Add edge 7-6 in the MST

Step 2: Pick edge 8-2. No cycle is formed, include it.

Add edge 8-2 in the MST

 www.ourcreativeinfo.in

Step 3: Pick edge 6-5. No cycle is formed, include it.

Add edge 6-5 in the MST

Step 4: Pick edge 0-1. No cycle is formed, include it.

 www.ourcreativeinfo.in

Add edge 0-1 in the MST

Step 5: Pick edge 2-5. No cycle is formed, include it.

Add edge 2-5 in the MST

Step 6: Pick edge 8-6. Since including this edge results in the cycle, discard it. Pick

edge 2-3: No cycle is formed, include it.

 www.ourcreativeinfo.in

Add edge 2-3 in the MST

Step 7: Pick edge 7-8. Since including this edge results in the cycle, discard it. Pick

edge 0-7. No cycle is formed, include it.

Add edge 0-7 in MST

 www.ourcreativeinfo.in

Step 8: Pick edge 1-2. Since including this edge results in the cycle, discard it. Pick

edge 3-4. No cycle is formed, include it.

 www.ourcreativeinfo.in

Dijkstra’sAlgorithm,

Given a weighted graph and a source vertex in the graph, find the shortest paths

from the source to all the other vertices in the given graph.

Note: The given graph does not contain any negative edge.

Examples:

Input: src = 0, the graph is shown below.

Output: 0 4 12 19 21 11 9 8 14

Explanation:

The distance from 0 to 1 = 4.

The minimum distance from 0 to 2 = 12. 0->1->2

The minimum distance from 0 to 3 = 19. 0->1->2->3

The minimum distance from 0 to 4 = 21. 0->7->6->5->4

The minimum distance from 0 to 5 = 11. 0->7->6->5

The minimum distance from 0 to 6 = 9. 0->7->6

The minimum distance from 0 to 7 = 8. 0->7

The minimum distance from 0 to 8 = 14. 0->1->2->8

 www.ourcreativeinfo.in

What is a Decision Tree?

A decision tree is a flowchart-like tree structure where each internal node denotes

the feature, branches denote the rules and the leaf nodes denote the result of the

algorithm. It is a versatile supervised machine-learning algorithm, which is used for

both classification and regression problems. It is one of the very powerful

algorithms. And it is also used in Random Forest to train on different subsets of

training data, which makes random forest one of the most powerful algorithms in

machine learning.

Decision Tree Terminologies

Some of the common Terminologies used in Decision Trees are as follows:

• Root Node: It is the topmost node in the tree, which represents the

complete dataset. It is the starting point of the decision-making process.

• Decision/Internal Node: A node that symbolizes a choice regarding an input

feature. Branching off of internal nodes connects them to leaf nodes or other

internal nodes.

• Leaf/Terminal Node: A node without any child nodes that indicates a class

label or a numerical value.

• Splitting: The process of splitting a node into two or more sub-nodes using a

split criterion and a selected feature.

• Branch/Sub-Tree: A subsection of the decision tree starts at an internal

node and ends at the leaf nodes.

• Parent Node: The node that divides into one or more child nodes.

• Child Node: The nodes that emerge when a parent node is split.

• Variance: Variance measures how much the predicted and the target

variables vary in different samples of a dataset. It is used for regression

problems in decision trees. Mean squared error, Mean Absolute Error,

friedman_mse, or Half Poisson deviance are used to measure the variance

for the regression tasks in the decision tree.

https://www.geeksforgeeks.org/introduction-to-tree-data-structure-and-algorithm-tutorials/
https://www.geeksforgeeks.org/ml-types-learning-supervised-learning/
https://www.geeksforgeeks.org/machine-learning/

 www.ourcreativeinfo.in

• Information Gain: Information gain is a measure of the reduction in impurity

achieved by splitting a dataset on a particular feature in a decision tree. The

splitting criterion is determined by the feature that offers the greatest

information gain, It is used to determine the most informative feature to split on

at each node of the tree, with the goal of creating pure subsets

• Pruning: The process of removing branches from the tree that do not

provide any additional information or lead to overfitting

 www.ourcreativeinfo.in

P, NP, CoNP, NP hard and NP complete

In computer science, there exist some problems whose solutions are not yet found,

the problems are divided into classes known as Complexity Classes. In complexity

theory, a Complexity Class is a set of problems with related complexity. These classes

help scientists to group problems based on how much time and space they require

to solve problems and verify the solutions. It is the branch of the theory of

computation that deals with the resources required to solve a problem.

The common resources are time and space, meaning how much time the algorithm

takes to solve a problem and the corresponding memory usage.

• The time complexity of an algorithm is used to describe the number of steps

required to solve a problem, but it can also be used to describe how long it takes

to verify the answer.

• The space complexity of an algorithm describes how much memory is

required for the algorithm to operate.

Complexity classes are useful in organising similar types of problems.

Types of Complexity Classes
This article discusses the following complexity classes:

1. P Class

2. NP Class

3. CoNP Class

4. NP-hard

5. NP-complete

 www.ourcreativeinfo.in

P Class
The P in the P class stands for Polynomial Time. It is the collection of decision

problems(problems with a “yes” or “no” answer) that can be solved by a

deterministic machine in polynomial time.

Features:

• The solution to P problems is easy to find.

• P is often a class of computational problems that are solvable and tractable.

Tractable means that the problems can be solved in theory as well as in practice.

But the problems that can be solved in theory but not in practice are known as

intractable.

This class contains many problems:

1. Calculating the greatest common divisor.

2. Finding a maximum matching.

3. Merge Sort

https://www.geeksforgeeks.org/maximum-bipartite-matching/
https://www.geeksforgeeks.org/merge-sort/

 www.ourcreativeinfo.in

NP Class
The NP in NP class stands for Non-deterministic Polynomial Time. It is the

collection of decision problems that can be solved by a non-deterministic machine

in polynomial time.

Features:

• The solutions of the NP class are hard to find since they are being solved by a

non-deterministic machine but the solutions are easy to verify.

• Problems of NP can be verified by a Turing machine in polynomial time.

Example:

Let us consider an example to better understand the NP class. Suppose there is a

company having a total of 1000 employees having unique employee IDs. Assume

that there are 200 rooms available for them. A selection of 200 employees must be

paired together, but the CEO of the company has the data of some employees who

can’t work in the same room due to personal reasons.

This is an example of an NP problem. Since it is easy to check if the given choice of

200 employees proposed by a coworker is satisfactory or not i.e. no pair taken from

the coworker list appears on the list given by the CEO. But generating such a list from

scratch seems to be so hard as to be completely impractical.

It indicates that if someone can provide us with the solution to the problem, we can

find the correct and incorrect pair in polynomial time. Thus for the NP class problem,

the answer is possible, which can be calculated in polynomial time.

This class contains many problems that one would like to be able to solve

effectively:

1. Boolean Satisfiability Problem (SAT).

2. Hamiltonian Path Problem.

3. Graph coloring.

 www.ourcreativeinfo.in

Co-NP Class
Co-NP stands for the complement of NP Class. It means if the answer to a problem in

Co-NP is No, then there is proof that can be checked in polynomial time.

Features:

• If a problem X is in NP, then its complement X’ is also in CoNP.

• For an NP and CoNP problem, there is no need to verify all the answers at once

in polynomial time, there is a need to verify only one particular answer “yes” or

“no” in polynomial time for a problem to be in NP or CoNP.

Some example problems for CoNP are:

1. To check prime number.

2. Integer Factorization.

NP-hard class
An NP-hard problem is at least as hard as the hardest problem in NP and it is a class

of problems such that every problem in NP reduces to NP-hard.

Features:

• All NP-hard problems are not in NP.

• It takes a long time to check them. This means if a solution for an NP-hard

problem is given then it takes a long time to check whether it is right or not.

• A problem A is in NP-hard if, for every problem L in NP, there exists a

polynomial-time reduction from L to A.

Some of the examples of problems in Np-hard are:

1. Halting problem.

2. Qualified Boolean formulas.

3. No Hamiltonian cycle.

NP-complete class
A problem is NP-complete if it is both NP and NP-hard. NP-complete problems are

the hard problems in NP.

Features:

• NP-complete problems are special as any problem in NP class can be

transformed or reduced into NP-complete problems in polynomial time.

• If one could solve an NP-complete problem in polynomial time, then one

https://www.geeksforgeeks.org/prime-numbers/
https://www.geeksforgeeks.org/print-all-prime-factors-of-a-given-number/
https://www.geeksforgeeks.org/np-hard-class/
https://www.geeksforgeeks.org/introduction-to-np-completeness/

 www.ourcreativeinfo.in

could also solve any NP problem in polynomial time

