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BRUTE FORCE 

Brute force is a straight forward approach to solving a problem, usually directly based on the 

problem statement and definitions of the concepts involved. 

 

Selection Sort, Bubble Sort, Sequential Search, String Matching, Depth-First Search and Breadth-First Search 

Advantages: 

1. Brute force is applicable to a very wide variety of problems. 
 

2. It is very useful for solving small size in stances of a problem, even though it is inefficient. 
 

3. The brute-force approach yields reasonable algorithms of at least some practical value with no 
limitation on instance size for sorting, searching, and string matching. 

 

 
Selection Sort 

• First scan the entire given list to find its smallest element and exchange it with the first 

element, putting the smallest element in its final position in the sorted list. 

• Then scan the list, starting with the second element, to find the smallest among the last n −1 

elements and exchange it with the second element, putting the second smallest element in its 

final position in the sorted list. 

• Generally, on the ith pass through the list, which we number from 0 to n − 2, the algorithm 

searches for the smallest item among the last n −i elements and swaps it with Ai: 

A0 ≤A1≤. .. ≤Ai–1|Ai, .. ., Amin,. .. ,An–1 

In their final positions|the last n –i elements 
 

• Aftern −1 passes, the list is sorted. 

ALGORITHM Selection Sort(A[0..n−1]) 

//Sorts a given array by selection sort 

//Input: An array A[0..n−1]of orderable elements 

//Output: Array A[0..n−1] sorted in non decreasing order 

for i ← 0 to n −2 do 

min ← i 

for j ←i +1 to n −1 do 

if A[j]<A[min] min←j 

swap A[i] and A[min] 
 

|89  45  68  90  29 34 17 

17 | 45  68  90  29 34 89 

17  29 | 68  90  45 34 89 

17  29  34 | 90  45 68 89 

17  29  34  45 | 90 68 89 

17  29  34  45  68 |90 89 



17 29 34 45 68 89 |90 

 

BubbleSort 

The bubble sorting algorithm is to compare adjacent elements of the list and exchange them 

if they are out of order. By doing it repeatedly, we end up “bubbling up” the largest element to the 

last position on the list. The next pass bubbles up the second largest element, and so on, until 

aftern−1passes the list is sorted.Passi(0≤i≤n−2)of bubble sort can be represented by the 
? 

 

following:A0,...,Aj⫘ Aj+1,...,An−i−1|An−i≤...≤An−1 

ALGORITHMBubbleSort(A[0..n−1]) 
 

//Sortsa given array by bubble sort 

//Input:AnarrayA[0..n−1]of orderable elements 

//Output:ArrayA[0..n−1] sorted in nondecreasing order 

fori ← 0 to n −2 do 
 

forj ← 0 to n −2 −i do 
 

ifA[j+1]<A[j]swapA[j]andA[j+1] 
 

The action of the algorithm on the list 89,45, 68,90, 29,34,17 is  example. 
 
 

The number of key comparisons for the bubble-sort version given above is the same for all 

arraysof size n; it is obtained by a sum that is almost identical to the sum for selection sort: 
n−2   n−2−i n−2 n−2 (n −1)n 

𝐶(𝑛)=∑ ∑1=∑[(n−2−i)−0+1]=∑(n−1−i)= 
2

 
i=0  j=i+1 i=0 i=0 
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EXHAUSTIVE SEARCH 
For discrete problems in which no efficient solution method is known,it might be necessary 

to test each possibility sequentially in order to determine if it is the solution. Such exhaustive 
examination of all possibilities is known as exhaustive search, complete search or direct search. 

Exhaustive search is simply a brute force approach to combinatorial problems 

(Minimization or maximization of optimization problems and constraint satisfaction problems). 

Reason to choose brute-force / exhaustive search approach as an important algorithm 

design strategy 

1. First, unlike some of the other strategies, brute force is applicable to a very wide 

variety of problems. In fact,it seems to be the only general approach for which it is 

more difficult to point out problems it cannot tackle. 

2. Second, for some important problems, e.g. sorting ,searching, matrix multiplication, 

string matching the brute-force approach yields reasonable algorithms of at least 

some practical value with no limitation on instance size. 

3. Third, the expense of designing a more efficient algorithm may be unjustifiable if 

only a few instances of a problem need to be solved and a brute-force algorithm can 

solve those instances with acceptable speed. 

4. Fourth, even if too inefficient in general, a brute-force algorithm can still be useful 

for solving small-size instances of a problem. 

Exhaustive Search is applied to the important problems like 

• Traveling Salesman Problem 

• Knapsack Problem 

 
TRAVELING SALES MAN PROBLEM 

The traveling salesman problem (TSP) is one of the combinatorial problems. The problem 

asks to find the shortest tour through a given set of n cities that visits each city exactly once before 

returning to the city where it started. 

 
The problem can be conveniently modeled by a weighted graph, with the graph’s vertices 

representing the cities and the edge weights specifying the distances. Then the problem can be 

stated as the problem of finding the shortest Hamiltonian circuit of the graph. (A Hamiltonian 

circuit is defined as a cycle that passes through all the vertices of the graph exactly once). 

AHamiltoniancircuitcanalsobedefinedasasequenceofn+1adjacentvertices vi0, vi1, . . . , vin−1, 

vi0, where the first vertex of the sequence is the same as the last one and all the other n − 1 vertices 

are distinct. All circuits start and end at one particular vertex. Figure 2.4 presents a small instance 
of the problem and its solution by this method. 
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Tour Length 

a--->b--->c --->d--->a I=2 +8+1 +7 =18 

a--->b--->d--->c--->a I= 2 + 3 + 1 + 5 = 11 optimal 
 

a--->c--->b--->d--->a I=5 +8+3 +7 =23 

a--->c--->d--->b--->a I= 5 + 1 + 3 + 2 = 11 optimal 
 

a--->d--->b--->c--->a I=7 +3+8 +5 =23 

a--->d--->c --->b--->a I=7 +1+8 +2 =18 

FIGURE2.4 Solution to a small instance of the traveling salesman problem by exhaustive search. 

 
Time efficiency 

• We can get all the to by generating all the permutations of n−1intermediate cities 

From a particular city..i.e.(n-1)! 

• Consider two intermediate vertices,say,band c,and then only permutations in which b 

Precedes c.(This trick implicitly defines tour’s direction.) 

• An inspection of Figure 2.4reveals three pairs of tours that differ only by their direction. 

Hence, we could cut the number of vertex permutations by half because cycle total 

lengths in both directions are same. 

• The total number of permutations needed is still 1(n − 1)!, which makes the exhaustive- 
2 

search approach impractical for large n. It is useful for very small values of n. 

 

 
KNAPSACKPROBLEM 

Given n items of known weights w1, w2, . .. , wnand values v1, v2, . . . , vnand a knapsack of 

capacity W, find the most valuable subset of the items that fit into the knapsack. 

 

Real time examples: 

• A Thifwho wants to steal the most valuable loot that fits into his knapsack, 

• A transport plane that has to deliver the most valuable set of items to are more location 

Without exceeding the plane’s capacity. 

 
The exhaustive-search approach to this problem leads to generating all the subsets of the set 

of n items given,computing the total weigh to each subset inorder to identify feasible subsets(i.e., 

the ones with the total weight not exceeding the knapsack capacity), and finding a subset of the 

largest value among them. 
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FIGURE2.5Instance of the knapsack problem. 
 
 

Subset Total weight Total value 

Φ 0 $0 

{1} 7 $42 

{2} 3 $12 

{3} 4 $40 

{4} 5 $25 

{1, 2} 10 $54 

{1, 3} 11 Not feasible 

{1, 4} 12 Not feasible 

{2, 3} 7 $52 

{2, 4} 8 $37 

{3, 4} 9 $65(Maximum-Optimum) 

{1, 2, 3} 14 Not feasible 

{1, 2, 4} 15 Not feasible 

{1, 3, 4} 16 Not feasible 

{ 2, 3, 4} 12 Not feasible 

{1, 2, 3, 4} 19 Not feasible 

FIGURE2. 6 knapsack problem’s solution by exhaustive search. The information about the 

optimal 

Selection is in bold. 

Time efficiency: As given in the example, the solution to the instance of Figure 2.5 is given in 

Figure 2.6. Since the number of subsets of an n-element set is 2n, the exhaustive search leads 

to a Ω(2n) algorithm, no matter how efficiently individual subsets are generated. 
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Note:Exhaustive search of both the traveling salesman and knapsack problems leads to extremely 
inefficient algorithms on every input. In fact, these two problems are the best-known examples of NP- 
hard problems. No polynomial-time algorithm is known for any NP-hard problem. Moreover, most 
computer scientists believe that such algorithms do not exist. some sophisticated approaches like 
backtracking and branch-and-bound enable us to solve some instances but not all instances of these in 
less than exponential time. Alternatively, we can use one of many approximation algorithms. 

 

 
Linear Search Algorithm(Sequential Search) 

 
What is Search? 

 
Search is a process of finding a value in a list of values. In other words, searching is the 

processof locating given value position in a list of values. 

 

 

 
Linear Search Algorithm (Sequential Search Algorithm) 

 
• Linear search algorithm finds given element in a list of elements with O(n) 

timecomplexity where n is total number of elements in the list. 

• This search process starts comparing of search element with the first element in the list. 

• If both are matching then results with element found otherwise search element 

iscompared with next element in the list. 

• If both are matched, then the result is "element found". Otherwise, repeat the same 

with the next element in the list until search element is compared with last element in 

the list. 

• if that last element also doesn't match, then the result is "Element not found in the 

list".That means, the search element is compared with element by element in the list. 

 
Linear search is implemented using following steps... 

 
 

Step 1: Read the search element from the user 
 

Step 2: Compare, the search element with the first element in the list. 
 

Step 3: If both are matching, then display "Given element found!!!" and terminate the function 

Step 4: If both are not matching, then compare search element with the next element in the list. 

Step 5: Repeat steps 3 and 4 until the search element is compared with the last element in the 
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list. 
 

Step 6: If the last element in the list is also doesn't match, then display "Element not found!!!"and 

 

terminate the function. 
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1. #include <stdio.h> 

2. 

3. int linearSearch(int arr[], int n, int target) { 

4. int i; 

5. for (i = 0; i< n; i++) { 

6. if (arr[i] == target) { 

7. return i; // Element found at index i 8.

 } 

9. } 

10. return -1; // Element not found 

11. } 

12. 

13. int main() { 

14. int arr[] = {10, 2, 8, 5, 17}; 

15. int n = sizeof(arr) / sizeof(arr[0]); 

16. int target = 8; 

17. int result = linearSearch(arr, n, target); 

18. if (result == -1) { 

19. printf("Element not found in the array.\n"); 

20. } else { 

21. printf("Element found at index: %d\n", result); 

22. } 

23. return 0; 

24. } 

 

Assuming that the target element is 8, let's use the example array [10, 2, 8, 5, 17]. Running the code 

yields the following result: 

 

Element found at index: 2 

 

The element '8' was found in this instance by the linear search technique at index 2 of the array. 

Let's dissect the implementation process in detail: 

1. To use the printf function, we include the h library. 

2. The array arr[], the array's size n, and the element to be searched are the three arguments 

provided to the linear Search function. 

3. We create the integer variable i and use a for loop to iterate through the array. 

4. We compare each element of the array with the target element inside the loop. 

5. If a match is discovered, we return the element's location's index. 
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6. We return -1 to denote that the element was not found if, after searching the full array, no 

matches were discovered. 

7. We declare an array called arr[] with a few random members in the main function. 

8. By dividing the array's overall size by the size of a single member, we may get the array's n- 

dimensional size. 

9. The target element we wish to look for is specified (in this example, 8). 

10. The array, size, and target are passed as arguments when we use the linear Search function, 

and we store the result in the result variable. 

11. Finally, we evaluate the value of the outcome. We print a message explaining that the 

element was not found if it is -1. If not, we display the index at which the element was 

located. 
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