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 ASYMPTOTIC NOTATIONS AND PROPERTIES 

 

Asymptotic notation is a notation, which is used to take meaningful statement bout the efficiency 
of a program. The efficiency analysis framework concentrates on the order of growth of an 
algorithm’s basic operation count as the principal indicator of the algorithm’s efficiency. 

 

To compare and rank such orders of growth, computer scientists use three notations, they are: 

 

• O-Big oh notation 

• Ω-Big omega notation 

• Θ-Big theta notation 

 

Let t(n)and g(n)can be any nonnegative functions defined on the set of natural numbers. 
The algorithm running time t(n)usually indicated by its basic operation count C(n), and g(n), 

Some simple function to compare with the count. 

 

 

(i) O-Big oh notation 
 

This Notation is used to express the upper bound of an algorithm running time ,It represents the worst 

case of an algorithm time complexity  

The longest amount of time an algorithm can possibly take complete  

A function t(n) is said to be in O(g(n)), denoted 𝑡 (𝑛)∈𝑂(𝑔(𝑛)), if t (n) is bounded 

above by some constant multiple of g(n) for all large n, i.e., if there exist some positive 

constant c and some nonnegative integer n0 such that 

 

(𝑛)≤𝑐𝑔(𝑛)𝑓𝑜𝑟𝑎𝑙𝑙 𝑛≥𝑛0. 

 

Where t(n)and g(n)are non negative functions defined on the set of natural 

numbers. O = Asymptotic upper bound = Useful for worst case analysis = Loose  
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Equation: 

f(n) ≤c.g(n) 𝑓𝑜𝑟𝑎𝑙𝑙 𝑛≥𝑛0. 

Example: 

Given f(n)=100n+5 prove that f(n)=o(n) 

Solution: 

Let f(n)=100n+5 

Replace 5 by  n 

f(n) 100+n 

f(n)=101n 

100n+5=101n 

f(n) ≤c.g(n) 𝑓𝑜𝑟𝑎𝑙𝑙 𝑛≥𝑛0. 

100n+5≤101n forall  ≥5 

C=101,n0=5, g(n)=n, 

 f(n)=o(n) proved 

 

(i) Ω-Big omega notation 
Omega Notation minimum time taken by an algorithm for  execution  time called omega Notation 

A function t(n) is said to be in Ω(g(n)), denoted t(n) ∈ Ω(g(n)), if t(n) is bounded below 

by some positive constant multiple of g(n) for all large n, i.e., if there exist some positive 

constant c and some non negative integer n0 such that 

t(n)≥cg(n) foralln ≥ n0. 

Where t(n)and g(n)are non negative functions defined on the set of natural numbers. 

Ω=Asymptotic lower bound=Useful for best case analysis= Loose bound 
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Equation :t(n)≥cg(n) for all n ≥ n0. 
Given f(n)=10n2+4n+3 proved f(n)= Ω(n2) 

Solution: let f(n)=10n2+4n+3 

  Remove 4n+3 

        f(n)= 10n2 

10n2+4n+3=10n2 

 

f(n)≥cg(n) for all n ≥ n0. 

 

C=10,g(n)=n2,no=1 

 
f(n)= Ω(n2) 

 

MATHEMATICAL ANALYSIS FOR NON-RECURSIVE 
ALGORITHMS  
 
 General Plan for Analyzing the Time Efficiency of Non recursive Algorithms: 
  
1. Decide on a parameter (or parameters) indicating an input’s size.  

2. Identify the algorithm’s basic operation (in the inner most loop). 
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 3. Check whether the number of times the basic operation is executed depends 

only on the size of an input. If it also depends  on some additional property, the 

worst-case, average-case, and, if necessary, best-case efficiencies have to be 

investigated separately. 

 4. Set up a sum expressing the number of times the algorithm’s basic operation is 

executed.  

5. Using standard formulas and rules of sum manipulation either find a closed 

form formula for the count or at the least, establish its order of growth.  

EXAMPLE 1: 
 Consider the problem of finding the value of the largest element in a list of n 
numbers. Assume that the list is implemented as an array for simplicity.  

 

 
 
 
 
 
 
 
 
 
Algorithm analysis 
 • The measure of an input’s size here is the number of elements in the array, i.e., 

n.  

• There are two operations in the for loop’s body: o The comparison A[i]> maxval 

and    o The assignment max val←A[i].  

ALGORITHM Max Element(A[0..n − 1])  
//Determines the value of the largest element in a given 
array  
//Input: An array A[0..n − 1] of real numbers  
//Output: The value of the largest element in A  
Maxval ←A[0] 
     for i ←1 to n − 1 do  
         if A[i]>maxval  
                   maxval←A[i]  
return maxval  
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• The comparison operation is considered as the algorithm’s basic operation, 

because the comparison is executed on each repetition of the loop and not the 

assignment. 

 • The number of comparisons will be the same for all arrays of size n; 

therefore, there is no need to distinguish among the worst, average, and best 

cases here.  

• Let C(n) denotes the number of times this comparison is executed. The 

algorithm makes one comparison on each execution of the loop, which is 

repeated for each value of the loop’s variable i within the bounds 1 and n − 1,  

inclusive. Therefore, the sum for C(n) is calculated as follows:  

 

 

Recursive Algorithms 
 
General Plan for Analyzing the Time Efficiency of 
Recursive Algorithms 
 1. Decide on a parameter (or parameters) indicating an input’s size. 

 2. Identify the algorithm’s basic operation.  

3. Check whether the number of times the basic operation is executed can vary 

on different inputs of the same size; if it can, the worst-case, average-case, and 

best-case efficiencies must be investigated separately. 

 4. Set up a recurrence relation, with an appropriate initial condition, for the 

number of times the basic operation is executed. 
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 5. Solve the recurrence or, at least, ascertain the order of growth of its solution 

 

EXAMPLE 1: Compute the factorial function F(n) = n! for an arbitrary non negative 
integer n. 
 Since n!= 1 
 
 n = (n − 1)! * n                          for n ≥ 1 and  
0!= 1 by definition, we can compute F(n) = F(n − 1) * n with the following 
recursive algorithm. 
 

 ALGORITHM F(n)  
//Computes n! recursively 
 //Input: A nonnegative integer n  
//Output: The value of n! 
 if n = 0  
return 1 
 else 
 return F(n − 1) * n  
 

Algorithm analysis  
• For simplicity, we consider n itself as an indicator of this algorithm’s input size. 
i.e.1.  
• The basic operation of the algorithm is multiplication; whose number of 
executions we denote M(n). Since the function F(n) is computed according to the 
formula F(n) = F(n −1) 
•n for n >0. 
 • The number of multiplications M(n) needed to compute it must satisfy the 
equality 
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Recurrence relations The last equation defines the sequence M(n) that we need 
to find. This equation defines M(n) not explicitly, i.e., as a function of n, but 
implicitly as a function of its value at another point, namely n − 1. Such equations 
are called recurrence relations or recurrences. 
 
 Solve the recurrence relation (n) = (n − 1) + 1, i.e., to find an explicit formula f o r 
M(n) in terms of n only.  
 
To determine a solution uniquely, we need an initial condition that tells us the 
value with which the sequence starts. We can obtain this value by inspecting the 
condition that makes the algorithm stop its recursive calls: 
 
 if n = 0 return 1.  
 
This tells us two things. First, since the calls stop when n = 0, the smallest value of 
n for which this algorithm is executed and hence M(n) defined is 0. Second, by 
inspecting the pseudo code’s exiting line, we can see that when n = 0, the 
algorithm performs no multiplications 
 
Thus, the recurrence relation and initial condition for the algorithm's number of multiplications 

M(n): 

M(n) = M(n - 1) + 1 

for n > 0 M(0) = 0  for 

 n = 0 

Method of backward substitutions 

substitute M(n - 1) = M(n - 2) + 1 

M(n) = M(n - 1) + 1 

= [M(n - 2) + 1] + 1 

= M(n - 2) + 2 

= [M(n - 3) + 1] + 2 

= M(n - 3) + 3 

substitute M(n - 2) = M(n - 3) + 1 
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= M(n - i) + i 

= M(n - n) + n 

=n 


