		4	140	14	CU.	4 Z U
Reg. No.						

III Semester B.C.A. 5 (CBCS) Degree Examination, April - 2023 OPERATING SYSTEM

O.S.Concepts by Silberschatz Galvin

(Repeaters)

Time: 3 Hours

Maximum Marks: 80

AACED ICODOO

Instructions to Candidates:

- 1. Answer the questions of all 3 sections as per the instructions.
- 2. Draw diagrams wherever necessary.

SECTION-A

Answer any TEN questions, 2 marks each.

 $(10 \times 2 = 20)$

- 1. a) What is multiprogramming?
 - b) List any four services of an operating system.
 - c) What are co-operating processes.
 - d) What is turn around time?
 - e) What do you mean by SJF?
 - f) What is critical section?
 - g) Define Deadlock.
 - h) What is logical address?
 - i) What is page fault?
 - j) Mention the different file operations.
 - k) What is thrashing?
 - 1) What is OTP?

SECTION-B

Answer any FOUR questions, 5 marks each.

 $(4 \times 5 = 20)$

- 2. Explain multiprogramming with time sharing concept.
- 3. Explain the states of a process with neat diagram.
- 4. Explain Round Robin scheduling algorithm with an example.
- 5. Explain SCAN method of disk scheduling.
- 6. Explain paging with an example.
- 7. Explain how to prevent deadlock process.

SECTION - C

Answer any FOUR of the following, 10 marks each.

 $(4 \times 10 = 40)$

8. Consider the following set of processes with CPU burst time given in milliseconds.

rocess		Burst time (in ms)
Ρ,		24
P,	*.	03
P_3^2		03

- Draw two Gantt charts illustrating the execution of these processes using FCFS and SJF scheduling.
- * Calculate average waiting and average turn around time in each case. (4+6)
- 9. Consider a system with 5 processes P₀ through P₄ and three resource types A,B,C. Resource type A has 10 instances, resource type B has 5 instances, and resource type C has 7 instances. The following shapshot of the system has been taken.

Allocation	Û	П
------------	---	---

	Α	В	C
P .0	0	1	0
$\mathbf{P}_{\mathbf{l}}$	2	0	0
P ₂	. 3	0	2
P_3	. 2.	1	1
P ₄	0	0	2

Max

Α.	В	C
7	5	3
3	2	2
9	0	2
2	2	2
4	3	3

Using Banker's algorithm answer the following:

- 1. What is the content of available matrix?
- 2. What is the content of need matrix?
- 3. Find the safe sequence, if the system is in a safe state. (2+2+6)
- 10. a) Explain look and c-look disk scheduling algorithm.
 - b) Explain swapping process with neat diagram. (5+5)
- 11. Explain FIFO and OPR (Optimal Page Replacement) algorithms considering the following string.

$$[7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1]$$

Frame size $\rightarrow 03$. (5+5)

12. a) Explain the different file attributes.

b) Explain contiguous file allocation method. (5+5)