

	35625/42625/F250							
Reg. No.								

VI Semester B.Sc.3./B.Sc.4. Degree Examination, September - 2021 CHEMISTRY (OPTTIONAL)

Paper - I

(Regular/Repeater)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. All questions are compulsory.
- 2. Answer all questions in the same answer book.
- 3. Draw neat diagrams and give equations wherever necessary.

SECTION-A

1. Answer any TEN of the following.

- a. What is stepwise constant and overall stability constant of a complex.
- b. Mention the factors that affect ' $10 D_q$ '.
- c. Write the Str. of Zeise's salt.
- d. Is $[Fe(CN)_6]^{3-}$ more or less paramagnetic? Give reason.
- e. What are epimers and epimerisation.
- f. Write the perspective formula of α D(+) glucose.
- g. Write the D & L conformers of Alanine.
- h. What are terpenes? Give Examples.
- i. What type of electronic transistions are involved in
 - 1. CH₃ Cl

2.
$$CH_3 - \overset{\circ}{C} - CH_3$$

- j. Give the meaning of intrinsic viscocity.
- k. Give the meaning of dielectric constant.
- 1. Give the principle of Davisson Germer experiment.

SECTION-B

Answer any FOUR of the following:

 $(4 \times 10 = 40)$

- 2. Account for the crystal field splitting of d orbitals in tetrahedral complexes.
- 3. Discuss 18 electron rule with respect to Ferrocene and $[Mn(CO)_5]^+$.
- 4. Give the classification of vitamins and mention the importance of Vitamin A and Vitamin B_c.
- 5. Explain how the dipolemoment helps in predicting shapes of molecules.
- 6. Write a note on structure of proteins.
- 7. Describe the methods of determination of dipole moment by temperature variation method.

SECTION - C

Answer any TWO the following.

 $(2 \times 10 = 20)$

- 8. a. Calculate the CFSE for for highspin and d⁵ octahedra complex. Which of them shows John Teller distortion.
 - b. What are chelates? Explain the factors affecting chelate stability.
- 9. a. Explain crystal field theory and colour of complexes.
 - b. Give the synthesis of citral.
- 10. a. How is Glycyl Alanine synthesized by Bergmann method.
 - b. Give Killiani's synthesis.
- 11. a. Give the classification of Polymers.
 - b. Illustrate Frank condon principle for electronic transitions of a diatomic molecule.
- 12. a. Deduce Einstein photo electric equation.
 - b. If an electron in an hydrogen atom jumps from 4th to 2nd orbit, What will be the wavelength of light emitted? The ground state energy of H atom is 13.6 eV. If the same transition occurs in slightly ionised helium atom, then what would be the wavelength?

		35626/42626/F26						260
	Reg. No.							
OV USING DY CEORDO OF	Continuoso Er i	BALL	HOE-	6 10	Dill	El av		0

VI Semester B.Sc.3./B.Sc.4. Degree Examination, September - 2021 **CHEMISTRY (OPTIONAL)**

Paper - II

(Repeater/Regular 2014-2015 Onwards)

Maximum Marks: 80 Time: 3 Hours Instructions to Candidates:

1. All the questions are compulsory.

Answer all questions in the same answer book.

3. Draw neat labelled diagram and give equation wherever neccesary.

SECTION-A

Give the synthesis of ald or colleginamine male ate (CPM)

Answer any **TEN** of the following.

- What is R_f value? How is it calculated. 1.
 - Give the principle of thermogravimetric analysis. b.
 - Name the macro and micro nutrients present in the soil. c.
 - Mention the types of electronic transitions. d.
 - What are detergents? Give one example. e.
 - What are antibiotics? Give an example. f.
 - What is Favorskii rearrangement. g.
 - What is chemical shift. h.
 - Mention any two types of electrodes with example. i.
 - What are photo inhibitors. į.
 - What is liquid liquid junction potential. k.
 - State Grothus Drapper law.

SECTION - B

Answer any FOUR of the following:

 $(4 \times 5 = 20)$

- Give a brief account of coloumn chromatography. 2.
- Write a note on Orgal diagram. 3.
- Give the synthesis and one use of chloroquine. 4.
- 5. Explain cleaning action of soap.

P.T.O.

- 6. How is pH of a solution is determined by using hydrogen electrode.
- 7. Explain with suitable example.
 - a. Phosphorescence.
 - b. Photosensitisation.

SECTION - C

Answer any FOUR of the following.

- 8. a. Give the brief account of paper chromatography.
 - b. Using Bray's and Olsen's method how do you determine phosphorus present in the soil.
- 9. a. Give the mechanism of Beckmann's rearrangement reaction.
 - b. Give the synthesis of chloropheniramine maleate (CPM).
- 10. a. Explain the PMR spectra of the following organic compound
 - i. Acetaldehyde
 - ii. Benzene.
 - b. Explain hydrogen electrode with neat labelled diagram.
- 11. a. Discuss the electronic spectra of $[Ti(H_2O)_6]^{3+}$ complex.
 - b. Explain the estimation of copper present in the given solution by electrogravimetric method.
- 12. a. Discuss the construction of calomel electrode.
 - b. Explain reversible and irreversible cells.

	35638/42638/F380						
Reg. No.							

VI Semester B.Sc.3/B.Sc.4 Degree Examination, September - 2021 MATHEMATICS (OPTIONAL)

Complex Analysis and Ring Theory

Paper - II

(Regular and Repeaters w.e.f. 2016-17)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

1. Question paper has 3 parts. Namely A,B and C.

Answer any FOUR of the following Clentinaries Bach)

2. Answer all parts.

PART-A

Answer any TEN of the following. (Two marks each).

 $(10 \times 2 = 20)$

- 1. a. Prove that an analytic function with constant imaginary part is constant.
 - b. Show that f(z) = xy + iy is continuous but not analytic.
 - c. Show that $\frac{-y}{x^2 + y^2}$ is harmonic.
 - d. Evaluate $\int_0^{1+i} z^2 dz$.
 - e. State 'Laurent's theorem'.
 - f. Define:
 - i. Pole
 - ii. Removable singularity.
 - g. Find the residue of $f(z) = \frac{e^z}{z(z-2)}$ at z = 0.
 - h. Prove that the zeros of an analytic function are isolated.
 - i. State 'Jordan's Lemma'.
 - j. Define a ring with unity and give an example of a ring with out unity.
 - k. Define left and right ideals.
 - 1. Define an 'Integral domain' and give an example.

P.T.O.

PART-B

Answer any FOUR of the following (Five marks each).

 $(4 \times 5 = 20)$

- 2. State and prove necessary condition for a function f(z) to be analytic.
- 3. State and prove 'Cauchy's inequality'.
- 4. If $u = e^{-x}(x \sin y y \cos y)$ find f(z) in terms of z by using milne thomson method.
- 5. If z = a is a pole of order m of f(z) then prove that

$$\operatorname{Re} s\{f(z):a\} = \lim_{z \to a} \left\{ \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} [(z-a)^m f(z)] \right\}$$

- 6. Prove that $\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta} = \frac{2\pi}{\sqrt{3}}.$
- 7. Show that the set of all 2×2 matrices form a ring w.r.t. matrix addition and matrix multiplication.

PART-C

Answer any FOUR of the following (Ten marks Each)

- 8. a. Prove that an analytic function with constant modulus is constant.
 - b. If f(z) is analytic, then prove that $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] |f(z)|^2 = 4 |f'(z)|^2$.
- 9. a. State and prove 'Liouvelle's theorem.
 - b. Let f(z) be analytic in a region R, between two closed contours C_1 and C_2 then $\oint_{C_1} f(z)dz = \oint_{C_2} f(z)dz$
- 10. a. State and prove 'Taylor's theorem for analytic function f(z).
 - b. Expand the function $f(z) = \frac{1}{z^2 3z + 2}$ by Laurent's series for
 - i. 1 < |z| < 2
 - ii. |z| > 2

- 11. a. State and prove 'Cauchy's Residue theorem.
 - b. Prove by contour integration that $\int_0^\infty \frac{dx}{(x^2+1)^3} = \frac{3\pi}{16}.$
- 12. a. A non empty subset S of a ring is a sub ring of R iff
 - i. $a, b \in S \Rightarrow a b \in S$
 - ii. $a, b \in S \Rightarrow ab \in S$
 - b. Define homomorphism of ring R into R' If $f: R \to R'$ is a homomorphism, then prove that
 - i. f(0) 0' where 0' is the identity element of R' and
 - ii. f(-a) = -f(a).

		35639/42639/F390					
Reg. No.	+:						

an every near (F) = [Q]([P)]

VI Semester B.Sc.3/B.Sc.4 Degree Examination, September - 2021 MATHEMATICS (OPTIONAL)

Topology and Laplace Transforms Paper - III

(Regular and Repeaters w.e.f. 2016-17)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates: Answer ALL parts.

PART-A

1. Answer any TEN of the following.

- a. If $X = \{1, 2, 3, 4\}$ and $T = \{X, \phi, \{2\}, \{3\}, \{2, 3\}\}$. Then prove that T is a topology on X.
- b. In a real space (R,U), prove that every closed interval is a closed set.
- c. Define
 - i. Cluster point
 - ii. Derived set.
- d. Prove that subspace of indiscrete space is indiscrete.
- e. Prove that every T_2 space is a T_1 space.
- f. Show that $L[\cos at] = \frac{s}{s^2 + a^2}$.
- g. Find the inverse Laplace transform of $\frac{(1+2s)^2}{s^4}$.
- h. Evaluate $L(t^2 \cos 2t)$.
- i. Evaluate $L^{-1}\left[\frac{s}{(s+4)^2}\right]$.
- j. Prove that $L[H(\in -a)] = \frac{e^{-as}}{s}$.

- k. Define convolution of two functions f(t) and g(t).
- L Write the working rule to solve the linear differential equations by Laplace transform.

PART-B

Answer any FOUR of the following.

 $(4 \times 5 = 20)$

- 2. If (X,T) is a topological space and A,B are two subsets of X, then prove that
 - i. $A \subset B \Rightarrow d(A) \subset d(B)$
 - ii. $d(A \cup B) \Rightarrow d(A) \cup d(B)$.
- 3. Define T_1 and T_2 spaces. Prove that property being a T_2 space is hereditary property.
- 4. If L[f(t)] = F(s), then prove that
 - i. L[f'(t)] = SF(s) f(0).
 - ii. $L[f''(t)] = S^2F(s) sf(0) f'(0)$.
- 5. Find the Laplace transform of
 - i. $e^{2t}(2t^2-3t+4)$
 - ii. $t^2 \sin t$
- 6. Find the inverse Laplace transform of $\frac{2s^2 6s + 5}{s^3 6s^2 + 8s}$.
- 7. Express the function $f(t) = \begin{cases} 6, & 0 < t < 4 \\ 2t + 1, & t > 4 \end{cases}$ interms of unit step function and find its Laplace transform.

PART-C

Answer any FOUR of the following.

- 8. a. In a topological space (X,T), if $A, B \subset X$, then prove that
 - i. $A \subset B$ then $\overline{A} \subset \overline{B}$
 - ii. $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$
 - b. If (X,T) is a topological space, prove that
 - i. Every intersection of closed set is a closed set.
 - ii. Every finite union of closed set is a closed set.

- 9. a. Define
 - i. Interior.
 - ii. Exterior
 - iii. Boundary of a subset A of X in the topological space (X,T). Prove that $\partial(A) = \overline{A} \cap \overline{A'}$.
 - b. If $X = \{a,b,c\}$ and $T = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,c\}\}\}$, then prove that $B = \{\phi,\{a\},\{b\},\{a,c\}\}\}$ is a base for topology.
- 10. a. State and Prove First Shifting Property.
 - b. Find L[f(t)]
 - i. Cosh4t. sin3t
 - ii. 61.
- 11. a. If L[f(t)] = F(S), then prove that $L\left[\frac{f(t)}{t}\right] = \int_{s}^{\infty} F(s).ds$.
 - b. Verify convolution theorem for f(t) = t, $g(t) = e^{2t}$.
- 12. a. If f(t) is a periodic function of period T>0, Then prove that $L[f(t)] = \frac{1}{1 e^{-ST}} \int_0^T e^{-ST} . f(t) . dt$
 - b. Solve $\frac{d^2y}{dt^2} + 2 \cdot \frac{dy}{dt} + 5y = e^{-5t} \cdot \sin t$, given that y(0) = 0, y'(0) = 1.

	42642-35642/F420						
Reg. No.						57	

Give Finstein's theory of specific h

VI Semester B.Sc.4/B.Sc.3 Degree Examination, September - 2021 PHYSICS (OPTIONAL)

(Regular&Repeaters)

Paper - I lo violati kna noitairikaos

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1) Calculators may be allowed for solving problems.
- 2) Write intermediate steps.
- 3) Give physical meaning for symbols and notations.

PART-I

1. Answer any TEN questions.

- a) What is Primitive cell?
- b) Define specific heat of solids.
- c) What is intrinsic semiconductor?
- d) Define transition temperature.
- e) What are the magic numbers?
- f) Mention Geiger-Nuttal law.
- g) What is renewable energy source?
- h) What is Zenith angle?
- i) What is hexadecimal number?
- j) Mention the types of liquid crystals.
- k) X-rays of wavelength 2A° make a glancing angle of 30° in the second order, when diffracted from Nacl crystal. Find the lattice constant of Nacl.
- 1) Convert (1011)₂ binary to decimal number.

PART-II

Answer any FOUR questions.

 $(4 \times 5 = 20)$

- 2. Mention Bravais lattices in two dimensions.
- 3. Mention the advantages of renewable energy sources.
- 4. Explain the construction and theory of linear accelerator.
- 5. The electrical and thermal conductivity of silver at 303 K are 6.2×10⁷ SI unit and 425 SI. unit respectively calculate Lorentz number.
- 6. Calculate the frequency of Oscillating potential applied to a cyclotron, so as to accelerate deutron using a magnetic field of 2.5 Tesla

Mass of deutron = 3.34×10^{-27} kg

Charge of electron = 1.6×10^{-19} c

7. Prove the Boolean identity

(A+B)(A+C)=A+BC

PART-III

Answer any **FOUR** of the following questions.

 $(4 \times 10 = 40)$

- 8. Give Einstein's theory of specific heat of Solids, What are its limitations.
- (8+2)
- 9. Derive an expression for electrical and thermal conductivity on the basis of free electron theory. (5+5)
- 10. Describe the construction and working of G M counter.
- 11. Write a note on conventional energy sources.
- 12. State and prove Demorgan's first law and second law.

(5+5)

	42643/35643/F430						
Reg. No.							

VI Semester B.Sc.4/B.Sc.3 Degree Examination, September - 2021 PHYSICS (OPTIONAL)

(Regular&Repeater)

M Paper - II malaxe mang a munio asau may

Time: 3 Hours

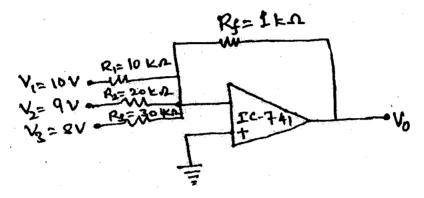
Maximum Marks: 80

Instructions to Candidates:

- 1) Use Calculators for calculations.
- 2) Write intermediate steps.
- 3) Give physical meaning for symbols and notations.

PART-I

1. Answer any TEN questions.


- a) Define inverse Fourier transform.
- b) State Parseval's identity of Fourier transform.
- c) What is photodiode? Draw its circuit symbol.
- d) Mention various losses in Optical fiber.
- e) What is Skip distance?
- f) What is demodulation?
- g) What is Flow Chart?
- h) What is break statement? Where it is used?
- i) Find the Laplace transform of eat.
- j) What is differential amplifier?
- k) In an optical fiber, refractive index of cladding lay is 1.4355 and refractive index of core is 1.4500.1 the numerical aperture.
- 1) Calculate the modulation factor for AM wav if $V_{max} = 4v$ and $V_{max} = 2v$.

PART-II

Answer any FOUR of the following.

 $(4 \times 5 = 20)$

- 2. Distinguish between step index and graded index fit.
- 3. Explain Space Wave propagation.
- 4. With neat circuit diagram, explain the working IC 555 as rectangular wave generator.
- 5. Find the Laplace transform of $f(t) = e^{at} \sinh bt$.
- 6. Write a C-program to find the sum of 'n' na numbers.
- 7. For the summing amplifier having Op-Amp shown calculate the output voltage V_0 .

PART'- III

Answer any FOUR of the following.

- **8.** a) Derive an expression for Fourier transform of derivative $\left[\frac{d^n f}{dt^n}\right]$
 - b) Establish relation between Laplace and Fourier transform.
- 9. Define acceptance angle and numerical aperture. Obtain an expression for numerical aperture of a optical fiber.
- 10. What is frequency modulation? Derive an expression for frequency modulation.
- 11. a) Explain basic data types used in C-language.
 - b) Write a C-program to convert the temperature degree celsius to Fahrenheit using the relation $F = 32 + \frac{9}{5}C$
- 12. What is multivibrator? Mention any two uses of multivibrator. Explain the working of monostable multibrator with neat diagram.