egro-

•	 	420	542	/35	642	2/F	4 20
Reg. No.	-						

VI Semester B.Sc.4/B.Sc.3 Degree Examination, September/October - 2022 PHYSICS (Optional)

Paper - I

(Repeater/Regular)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Student can use calculator to solve problems.
- 2. Write intermediate steps.

PART-I

Answer any Ten of the following questions.

 $(10 \times 2 = 20)$

- 1. a) What is meant by unit cell?
 - b) Write any two properties of free electrons in metal.
 - c) Distinguish between intrinsic and extrinsic semiconductor.
 - d) Mention any two uses of super conductivity.
 - e) Write any two properties of r rays.
 - f) Mention semi empirical mass formula.
 - g) What is meant by secondary energy source?
 - h) What is declination (f)?
 - i) Write the truth table of NAND gate.
 - j) Convert (1010), binary to decimal.
 - k) Calculate the interplanar spacing for (3,2,2) plane in a simple cubic lattice, where lattice constant is 4×10^{-10} m.
 - 1) If the solar attitude angle at a place is 45°20' calculate the value of zenith angle.

PART-II

Answer any Four of the following questions.

 $(4 \times 5 = 20)$

2. Explain x-ray diffraction by powder crystal method.

- 3. What is the transition temperature? Mention any three applications of super conductivity.
- 4. Explain nucler fission on the basis of liquid drop model.
- 5. Describe Angstrom pyrheliometer.
- 6. Prove the Boolean expression.

$$(A+B+C).(A+B)=A+B.$$

- 7. Protons are accelerated in cyclotron with dees of radius 0.4 m and frequency of the alternating potential is 10 Mega cycle per second at 10,000 volts. Calculate the
 - a) Speed of proton and
 - b) Kinetic energy of proton (Given applied field B = 0.66 weber/metre²).

PART-III

Answer any Four of the following questions.

- 8. Give Debye's theory of specific heat capacity of a solid.
- 9. What is Hall effect? Derive an expression for Hall coefficient. Mention any two applications of Hall effect.
- 10. Describe the construction and working of a linear accelerator. Derive the expression for the length of nth tube.
- 11. Explain tidal energy. Mention advantages and disadvantages of tidal energy.
- 12. Construct the basic gates using NAND gate and write the truth tables.

Sem

INDELEMENT IN COLUMN	INDICATE AS ELEANT FILL	\$187 UL BU B 115 1 S SEC	FER AT MILE THE STATE STATE

		420	643	$\sqrt{35}$	643	3/F	430
Reg. No.							

VI Semester B.Sc. Degree Examination, September/October - 2022 PHYSICS (OPTIONAL)

Paper - II

(Repeater/Regular)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1) USe calculators for calculations.
- 2) Write intermediate steps.

PART-I

Answer any Ten questions.

 $(10 \times 2 = 20)$

- 1. a) Define Fourier transform.
 - b) Find the Laplace transform of eat.
 - c) What is PIN diode?
 - d) Mention the applications of optical fibre.
 - e) What is modulation?
 - f) What are key words in C-language.
 - g) What is D-layer.
 - h) Draw the neat symbol of Op-amp.
 - i) Mention applications of IC-555 timer.
 - j) Write a C program to print "Good morning".
 - k) An optical fibre has following R1. $n_1 = 1.5$ and $n_2 = 1.45$ calculate critical angle.
 - 1) Calculate the modulation factor for AM wave if $V_{max} = 4V$ and $V_{min} = 2V$.

PART-II

Answer any Four of the following.

 $(4 \times 5 = 20)$

- 2. Find the Laplace transform of $f(t) = t^2$ using transform derivative.
- 3. Distinguish between step index and graded index optical fibre.
- 4. Explain space wave propagation.
- 5. Explain the function of various pins of IC-7400 NAND gate.
- 6. Write a C-program to convert Fahrenheit to centigrade using the relation C = (F-32)/1.8.
- 7. An audio signal of 5KHz is used to amplitude modulate of 600 KHz. Find.
 - a) Side band frequency.
 - b) Band width.

PART-III

Answer any Four of the following.

- 8. State and explain basic properties of Laplace transform.
- 9. Classify optical fibre based on refractive index profile. Hence describe them with typical core and cladding diameter, refractive index profile and mode propagation sketches.
- **10.** a) Explain basic data types used in C-language.
 - b) Write a C program to find largest of three numbers.
- 11. What is amplitude modulation? Derive expression for amplitude modulation.
- 12. a) What is an Op-amplifier? Whta are ideal properties of an Op-amplifier?
 - b) Explain the working of summing amplifier using Op-amp.

	42637/35637/F370								
Reg. No.									

VI Semester B.Sc.3./B.Sc.4. Degree Examination, September/October - 2022 MATHEMATICS (OPTIONAL)

Differential Equations

Paper - I

(Repeater/Regulars)

(w.e.f. 2016-17)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

Answer all parts.

PART-A

Answer any Ten of the following.

 $(10 \times 2 = 20)$

- 1. a. Solve for y, $\frac{dx}{dt} + wy = 0$; $\frac{dy}{dt} wx = 0$.
 - b. Solve $\frac{dx}{1+y} = \frac{dy}{1+x} = \frac{dz}{z}$.
 - c. Solve dx + dy + (x + y + z + 1)dz = 0.
 - d. Define singular and irregular singular point at $x = x_0$ for the equation y'' + P(x)y' + Q(x)y = 0.
 - e. Show that x = 0 is an regular singular point of $x^2y'' + xy' + \frac{(x^2 1)}{4}y = 0$.
 - f. With usual notation prove that $P_3(x) = \frac{1}{2}(5x^3 3x)$.
 - g. Prove that $\sum P_n(x) = \frac{1}{\sqrt{2-2x}}$.
 - h. Form the partial differential equation by eliminating arbitrary constants a and b from $az + b = a^2x + y$.
 - i. Find the complete integral of $p(q \cot y) = \tan x$.
 - j. Solve $q(p^2z+q^2)=4$.
 - k. Solve $(D^3 3D^2D' + 3DD^{12} D^{13})z = 0$.
 - 1. Find the particular integral of $(4D^2 4DD' + D'^2)z = e^{x+y}$.

PART-B

Answer any Four of the following.

 $(4 \times 5 = 20)$

- 2. Solve for x, $\frac{dx}{dt} + \frac{dy}{dt} 2y = 2\cos t 7\sin t$; $\frac{dx}{dt} \frac{dy}{dt} + 2x = 4\cos t 3\sin t$.
- 3. Solve $\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{mxy}$.
- 4. Find the power series solution at x = 0 for $(1-x^2)y'' + 2xy' y = 0$.
- 5. Prove that $(1-2xz+z^2)^{-\frac{1}{2}} = \sum z^n P_n(x)$.
- 6. Find the singular integral of $z = px + qy + c\sqrt{1 + p^2 + q^2}$.
- 7. Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} 2 \frac{\partial^2 z}{\partial y^2} = \cos(2x + y)$.

PART-C

Answer any Four of the following.

- 8. a. Derive the condition for integrability of the equation Pdx + Qdy + Rdz = 0, where P, Q and R are functions of x,y,z.
 - b. Solve $(e^x y + e^z) dx + (e^y z + e^x) dy + (e^y e^x y e^y z) dz = 0$.
- 9. a. Find the power series solution at x = 0 for $(1-x^2)y'' + 2y = 0$.
 - b. Solve on series for 4xy''+2(1-x)y'-y=0 by Frobenius method at x=0.
- 10. a. Prove that $nP_n = (2n-1)xP_{n-1} (n-1)P_{n-2}, \forall n \ge 2$.
 - b. Prove that $\int_{-1}^{1} [P_n(x)]^2 dx = \frac{2}{2n+1}$, when m = n.
- 11. a. Explain the method of solving for linear partial differential equation of first order of the form Pp + Qq = R, where P, Q and R are the functions of x,y,z.
 - b. Solve (y+z)p + (z+x)q = x+y.
- 12. a. Explain charpit's method for solving the partial differential equation F(x, y, z, p, q) = 0.
 - b. Solve $p = (qy + z)^2$ by charpit's method.

	1

		420	638	/35	638	3/F	380
Reg. No.							

VI Semester B.Sc.3./B.Sc.4. Degree Examination, September/October - 2022 MATHEMATICS (OPTIONAL)

Complex Analysis and Ring Theory Paper - II

(Regular & Repeater w.e.f. 2016-17)

Time: 3 Hours Maximum Marks: 80

Instructions to Candidates: Answer all parts.

PART-A

Answer any Ten of the following.

 $(10 \times 2 = 20)$

- 1. a. Show that $f(z) = \overline{z}$ is continuous but not analytic at z = 0.
 - b. Prove that an analytic function with constant real part is constant.
 - c. Define harmonic function and show that $x^2 y^2$ is harmonic.
 - d. Evaluate $\int_C \frac{1}{z-z_0} dz$, where $c: |z-z_0| = r$.
 - e. State Morera's theorem.
 - f. Expand $f(z) = e^z$ in the form of Taylor's series about z = 0.
 - g. Find the residue of $f(z) = \frac{z^2}{z^2 + a^2}$ at the pole z = ai.
 - h. State Cauchy's inequality.
 - i. Define:
 - i. Zero's
 - ii. Singular point of an analytic function,
 - j. State Jordan's lemma.
 - k. Define
 - i. Principle ideal and
 - ii. Maximal ideal.
 - 1. In a ring $(R, +, \bullet)$ prove that $a(-b) = (-a)b \forall a, b \in R$.

PART-B

Answer any Four of the following.

 $(4 \times 5 = 20)$

2. State and prove necessary condition for f(z) to be analytic.

- 3. If f(z) is analytic, then prove that $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] |f(z)|^2 = 4 |f'(z)|^2$.
- 4. Show that $u(x, y) = e^x(x \cos y y \sin y)$ is harmonic and find f(z) by Milne Thomson method.
- 5. State and prove Liouvilles theorem.
- 6. Prove that $\int_{0}^{2\pi} \frac{1}{3+2\cos\theta} d\theta = \frac{2\pi}{\sqrt{5}}$ by using contour integration.
- 7. Show that the set of all matrices of the form $M = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \forall a, b \in R \right\}$ is non commutative ring without unity w.r.t addition and multiplication of matrices.

PART-C

Answer any Four of the following.

- 8. a. State and prove cauchy's theorem for simply connected regions.
 - b. Show that $f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$, $z \neq 0$ and f(0) = 0 satisfy C-R equations at z = 0 but f(z) is not analytic at z = 0.
- 9. a. State and prove cauchy's integral formula.
 - b. Evaluate $\int_{C}^{z-\cos z} dz$, where 'C' is a simple closed curve containing $z = \frac{\pi}{2}$.
- 10. a. State and prove Taylor's theorem.
 - b. Expand $f(z) = \frac{1}{z(z-1)(z-2)}$ in the form of series valid for the regions
 - i. z < 1

- ii. |<|z|<2.
- 11. a. State and prove cauchy's residue theorem.
 - b. Evaluate $\int_0^\infty \frac{1}{(x^2+1)(x^2+4)} dx$, by using contour integration.
- 12. a. Define Kernel of homomorphism. If $f: R \to R'$ be a homomorphism of R to R' with kernel K, then prove that
 - i. K is subring of R.
 - ii. K is an ideal of R.
 - b. Find the principle ideal of ring R if $R = \{0,1,2,3,4,5\}$ with respect to addition modulo 6.

		350	539	/42	639)/ F.	<u> 390</u>
Reg. No.	-			4			

VI Semester B.Sc.3./B.Sc.4. Degree Examination, September/October - 2022 MATHEMATICS (OPTIONAL)

Topology and Laplace Transforms

Paper - III

(Regular and Repeaters w.e.f. 2016-17)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates :

Answer ALL parts.

PART-A

1. Answer any Ten of the following.

 $(10 \times 2 = 20)$

- a. Write the discrete and indiscrete topology an a set $X = \{a,b,c\}$.
- b. Let $X = \{1,2,3\}$ and $T = \{X, \phi, \{1\}, \{2\}, \{1,2\}, \{2,3\}\}$ be a topology on X. If $A = \{1,3\}$ find \overline{A} .
- c. Show that (R,U) is a T₂ space.
- d. Define interior and exterior point of A in (X,T).
- e. Define base and sub base of topology.
- f. Find $L(\cos^2 3t)$.
- g. Find $L\left(\frac{\sin t}{t}\right)$.
- h. Evaluate $L^{-1} \left[\frac{(1+2s)^2}{s^4} \right]$.
- i. Evaluate $L^{-1}\left[\frac{S+1}{(S+2)^5}\right]$.
- j. Show that L[f'(t)] = SF(S) f(0) where f(t) is continuous function.
- k. Solve y''+16y=0 given y(0)=0, y'(0)=2.
- 1. Define Heaviside function H(t-a) and find its Laplace transform.

PART-B

Answer any Four of the following.

 $(4 \times 5 = 20)$

- 2. In a topological space (X,T) if $A,B \subset X$ then prove that
 - i. If $A \subset B$ then $\overline{A} \subset \overline{B}$.
 - ii. $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 3. Prove that a non-empty subset A of X is open if and only if its neighbourhood of each of its points.
- 4. Find Laplace transform of the function $f(t) = \begin{cases} 2 & \text{for } 0 < t < 3 \\ t & \text{for } t > 3 \end{cases}$.
- 5. If f(t) is periodic function of period T>0 then prove that $L\{f(t)\} = \frac{1}{1 e^{-sT}} \int_{0}^{T} e^{-st} f(t) dt$.
- **6.** Find $L\{f(t)\}\$ where $f(t) = e^{2t} .\cos^2 t + t .\cos 2t .$
- 7. Solve $\frac{d^2y}{dt^2} + 9y = 25e^{4t}$ given y(0) = 3, y'(0) = 7 by using Laplace transform.

PART-C

Answer any Four of the following.

- 8. a. Let A be a subset of a topological space (X,T). Then prove that $\overline{A} = A \cup d(A)$.
 - b. In a topological space (X,T) of A and B are subsets of X then prove that
 - i. $A \subset B \Rightarrow A^o \subset B^o$.
 - ii. $(A \cap B)^o \Rightarrow A^o \cap B^o$.
- 9. a. Prove that every T_2 space is T_1 space but the converse is not true.
 - b. If $X = \{a,b,c\}$ and $T = \{X,\phi,\{a\},\{a,c\}\}$ is topology on X then prove that the set $B = \{\phi,\{a\},\{c\},\{a,b\}\}$ is base for T.

- 10. a. State and prove second shifting property.
 - b. Find
 - i. L(sin5t.cos3t).
 - ii. $L(t.\cosh at)$.
- 11. a. If L(f(t)) = F(S) then prove that $L[t^n.f(t)] = (-1)^n \frac{d^n}{ds^n} [F(s)]$.
 - b. Find $L\left[\frac{e^{-at}-e^{-bt}}{t}\right]$.
- 12. a. State and prove convolution theorem.
 - b. Using convolution theorem find $L^{-1}\left[\frac{1}{(S+2)(S+4)}\right]$.

		35	525	/42	62.)/ E	250
Reg. No.							

VI Semester B.Sc.3./B.Sc. 4 Degree Examination, September/October - 2022 CHEMISTRY (OPTIONAL)

Paper - I

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. All questions are compulsory.
- 2. Answer all question in the same answer book.
- 3. Draw neat diagram and give equations wherever necessary.

SECTION-A

Answer any Ten of the following.

 $(10 \times 2 = 20)$

- 1. a) Calculate the stability constant (K¹) of the complex ion $[Ag(NH_3)_2]^+$ whose dissociation constant is 6×10^{-8} .
 - b) What are chelates? Give an example.
 - c) Mention the factors affecting 10 Dq.
 - d) Give the structure of Ferrocene.
 - e) What is mutarotation?
 - f) Give the structure of fructosazone.
 - g) What do you mean by electrophoresis.
 - h) Write the importance of vitamin -A, B_1 , and E.
 - i) Give Einstein photo electric equation and explain the terms in it.
 - j) Define de-Broglie hypothesis.
 - k) State Frank condon principle.
 - 1) Write the selection rule for electronic spectrum.

SECTION-B

Answer any Four of the following.

 $(4 \times 5 = 20)$

- 2. Write a note on structure and bonding in zeise's salt.
- 3. Calculate crystal field stabilization energy (CFSE) for high spin and low spin d⁵ octahedral complex. Mention which of the above complex shows Jahn Teller distortion.
- 4. Explain Bergmann synthesis of a Dipeptide.

- 5. Give the constitution of citral.
- **6.** Deduce Einstein photo electric equation.
- 7. How do you determine molar mass of macromolecules by viscometry method.

SECTION-C

Answer any Four of the following.

- 8. a) Discuss 18 electron rule with respect to $[Fe(CO)_5]$ and $[Ni(CO)_5]$.
 - b) Describe the calculation of magnetic moment using Gouy's method.
- 9. a) Give the synthesis of α terpineol.
 - b) Using zwitter ionic structure of glycine, explain acid base properties of amino acids.
- 10. a) Explain the concept of potential energy curve for bonding and anti bonding molecular orbitals.
 - b) Describe the classification of polymers. Based on source, structure and formation.
- 11. a) Discuss the primary and secondary structure of proteins.
 - b) What is dipole moment? Explain the measurement of dipole moment by temperature variation method.
- 12. a) How will you account for the purple colour of $[Ti(H_2O)_6]^{+3}$?
 - b) Explain the synthesis of Vitamin A by Vandrop et al method.

			350	526	/42	626)/ F.	260
Reg. No.	·	·						

VI Semester B.Sc.3./B.Sc.4. Degree Examination, September/October - 2022 CHEMISTRY (OPTIONAL)

Paper - II

(Repeater/Regulars)

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- I. All questions are compulsory.
- 2. Answer all question in the same answer book.
- 3. Draw neat diagram and give equation wherever necessary.

SECTION-A

Answer any Ten of the following.

 $(10 \times 2 = 20)$

- 1. a) Write any two factors affecting the R_f value.
 - b) Mention the principle of electrogravimetry analysis.
 - c) Name the micro and macro nutrients present in the soil.
 - d) State selection rule for d-d transitions.
 - e) What are antihistamine drugs? give an example.
 - f) What are Anionic detergents? Give an example.
 - g) What happens ketoximes treated with an acid? Give an example.
 - h) Mention one advantage and structure of TMS.
 - i) State Grothus Draper Law.
 - j) What is reversible and irreversible cell?
 - k) Construct the cell for the reaction $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$. And indicate which one is anode and cathode.
 - 1) Write the conditions of standard cell.

SECTION-B

Answer any Four of the following.

 $(4 \times 5 = 20)$

- 2. Give brief account of paper chromatography.
- 3. Explain the electronic spectrum of $[Ti(H_2O)_6]^{3+}$ complexion.
- 4. Write the synthesis and use of Novocaine.
- 5. Write the mechanism of Benzillic acid rearrangement reaction.

- 6. Write the construction of hydrogen electrode.
- 7. Explain with a suitable example.
 - a) Photo chemical inhibition.
 - b) Photosensitization.

SECTION-C

Answer any Four of the following.

 $(4 \times 10 = 40)$

- 8. a) Explain principle and working of flame photometry. Write two limitations of flame photometry.
 - b) Explain the determination of Nitrogen present in the soil by alkaline permanganate method.
- 9. a) Explain the manufacture of soaps by hydrolyser process.
 - b) Explain the following:
 - i) Nuclear shielding and deshielding.
 - ii) Spin Spin coupling.
- 10. a) Write electrolytic concentration cell without transfer with salt Bridge.
 - b) Define quantum efficiency. Mention any two reasons for high and low quantum efficiency with an example.
- 11. a) Explain the estimation of copper present in the given solution by electrogravimetric method.
 - b) Give the synthesis and use of chloroquine.
- 12. a) Calculate the e.m.f. of the following cell at 25° C $Zn(s)/Zn^{2+}(0.1m)/Cu^{2+}(1.75M)/Cu(s)$.

Given:

$$E^{o}Zn^{2+}/Zn = -0.76V \cdot$$

$$E^{\circ}Cu^{2+}/Cu = +0.34V$$
.

- b) i) Write the Ideal characteristics of drugs.
 - ii) Write Types of electrodes.