

	Jan Jan			254 37 35	100000	121110		
Reg. No.					1			
	(Table	THE O	111 225	20. 2	note:	1	1 1	

First Semester B.Sc. 3 Degree Examination, Nov./Dec. 2016 MATHEMATICS (Optional)

Paper – II: Algebra and Trigonometry (Fresh and Repeater New Syllabus)

Time: 3 Hours Max. Marks: 80

Instructions: 1) Question paper contains three Parts namely A, B and C.

2) Answer all questions.

PART-A

1. Answer any ten of the following:

(10×2=20)

- a) Define:
 - i) Reciprocal determinant
 - ii) Symmetric determinant.
- b) Find the co-factor of an element 2 in the determinant

- d) Define elementary raw transformation of a matrix.
- e) Define:
 - i) Consistency to leave the analysis to be a few to be
 - ii) Inconsistency of the non-homogeneous linear equations.
- f) Define an equivalence relation.
- g) Show that the set of even integer is countable.
- h) Find the remainder on dividing $x^4 + 2x^3 3x^2 + 5x 10$ by x + 3.

- i) State the fundamental theorem of algebra.
- j) If r_1 , r_2 and r_3 are the roots of the equation $x^3 3x^2 + 2x 1 = 0$ then find the value of $r_1^2 + r_2^2 + r_3^2$.
- k) Express cos(x + iy) in the form A+ iB.
- I) Evaluate $\log_e (-1 + i\sqrt{3})$.

PART-B

Answer any four of the following:

(4×5=20)

- 2. Prove that $\begin{vmatrix} x+a & b & c & d \\ a & x+b & c & d \\ a & b & x+c & d \\ a & b & c & x+d \end{vmatrix} = x^3 (x + a + b + c + d)$
- 3. Find the rank of matrix $\begin{bmatrix} 2 & -2 & 0 & 6 \\ 4 & 2 & 0 & 2 \\ 1 & -1 & 0 & 3 \\ 1 & -2 & 1 & 2 \end{bmatrix}$ by reducing it to normal form.
- Prove that the rank of matrix does not alter, by multiplying the elements of a row by non-zero scalar.
- 5. Prove that the unit interval [0, 1] is uncountable.
- 6. Find the value of k and solve the equation $x^3 + 2x^2 + kx 6 = 0$, given that the sum of two of the roots is -4.
- 7. Express $\sin^5\theta$ in series of sine multiples of θ .

Answer any four of the following:

(4×10=40)

- 8. a) If Δ is a determinant of order 4 and Δ' is reciprocal of Δ , then prove that $\Delta' = \Delta^3$.
 - b) Prove that $\begin{vmatrix} o & x & y & z \\ -x & o & c & b \\ -y & -c & o & a \\ -z & -b & a & o \end{vmatrix} = (ax by + cz)^2.$

- 9. a) Find the inverse of A = $\begin{bmatrix} 3 & 5 & 7 \\ 2 & -3 & 1 \\ 1 & 1 & 2 \end{bmatrix}$ by using elementary transformation.
 - b) Solve the system of equations x + 2y + 3z = 6, 2x + y z = 3, 3x y + 2z = 11 by using elementary transformations.
- 10. a) With usual notations prove that

i)
$$\left(\bigcap_{\lambda\in\Lambda}A_{\lambda}\right)'=\bigcup_{\lambda\in\Lambda}A_{\lambda}'$$
 ii) $\left(\bigcup_{\lambda\in\Lambda}A_{\lambda}\right)'=\bigcap_{\lambda\in\Lambda}A_{\lambda}'$

- b) Prove that the set N × N is countable.
- 11. a) Prove that every polynomial equation $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + ... + a_{n-1} x + a_n = 0 \text{ has exactly n roots.}$
 - b) Find the roots of equation $f(x) = 4x^4 7x^2 = 5x 1$.
- 12. a) If sin(A + iB) = x + iy, then prove that

i)
$$\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$$
 ii) $\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1$

b) Sum to n terms of the series

$$\cos \alpha + x \cos(\alpha + \beta) + x^2 \cos(\alpha + 2\beta) + \dots$$