Chapter 01
 Introduction to Computers

Computer Fundamentals - Pradeep K. Sinha \& Priti Sinha

Learning Objectives

In this chapter you will learn about:

B Computer
B Data processing
B Characteristic features of computers
B Computers' evolution to their present form
B Computer generations
B Characteristic features of each computer generation

Computer

B The word computer comes from the word "compute", which means, "to calculate"

B Thereby, a computer is an electronic device that can perform arithmetic operations at high speed

B A computer is also called a data processor because it can store, process, and retrieve data whenever desired

Darg Procescing

The activity of processing data using a computer is called data processing

Data is raw material used as input and information is processed data obtained as output of data processing

Characteristics of Conpurers

1) Automatic: Given a job, computer can work on it automatically without human interventions
2) Speed: Computer can perform data processing jobs very fast, usually measured in microseconds (10^{-6}), nanoseconds (10^{-9}), and picoseconds (10^{-12})
3) Accuracy: Accuracy of a computer is consistently high and the degree of its accuracy depends upon its design. Computer errors caused due to incorrect input data or unreliable programs are often referred to as Garbage-In-Garbage-Out (GIGO)

Characteristics of Compurers

(Continued from previous slide..)
4) Diligence: Computer is free from monotony, tiredness, and lack of concentration. It can continuously work for hours without creating any error and without grumbling
5) Versatility: Computer is capable of performing almost any task, if the task can be reduced to a finite series of logical steps
6) Power of Remembering: Computer can store and recall any amount of information because of its secondary storage capability. It forgets or looses certain information only when it is asked to do so

Characteristics of conspurers

(Continued from previous slide..)
7) No I.Q.: A computer does only what it is programmed to do. It cannot take its own decision in this regard
8) No Feelings: Computers are devoid of emotions. Their judgement is based on the instructions given to them in the form of programs that are written by us (human beings)

Evolucjos of cosspurers

B Blaise Pascal invented the first mechanical adding machine in 1642
ß Baron Gottfried Wilhelm von Leibniz invented the first calculator for multiplication in 1671
B Keyboard machines originated in the United States around 1880

B Around 1880, Herman Hollerith came up with the concept of punched cards that were extensively used as input media until late 1970s

Eyolution of Computers

(Continued from previous slide..)
B Charles Babbage is considered to be the father of modern digital computers

B He designed "Difference Engine" in 1822
B He designed a fully automatic analytical engine in 1842 for performing basic arithmetic functions

B His efforts established a number of principles that are fundamental to the design of any digital computer

Some well known Early Consputers

B The Mark I Computer (1937-44)
B The Atanasoff-Berry Computer (1939-42)
B The ENIAC (1943-46)
B The EDVAC (1946-52)
B The EDSAC (1947-49)
B Manchester Mark I (1948)
B The UNIVAC I (1951)

conpurer Generotions

B "Generation" in computer talk is a step in technology. It provides a framework for the growth of computer industry

B Originally it was used to distinguish between various hardware technologies, but now it has been extended to include both hardware and software

B Till today, there are five computer generations

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Computer Generations

(Continued from previous slide..)

Generation (Period)	Key hardware technologies	Key software technologies	Key characteristics	Some representative systems
$\begin{aligned} & \text { First } \\ & \text { (1942-1955) } \end{aligned}$	B Vacuum tubes BElectromagnetic relay memory ßPunched cards secondary storage	B Machine and assembly languages BStored program concept B Mostly scientific applications	ß Bulky in size ß Highly unreliable ßLimited commercial use and costly ß Difficult commercial production ß Difficult to use	B ENIAC B EDVAC B EDSAC B UNIVAC I BIBM 701
$\begin{aligned} & \text { Second } \\ & (1955-1964) \end{aligned}$	B Transistors BMagnetic cores memory ß Magnetic tapes ß Disks for secondary storage	ß Batch operating system ß High-level programming languages ßScientific and commercial applications	ß Faster, smaller, more reliable and easier to program than previous generation systems BCommercial production was still difficult and costly	B Honeywell 400 BIBM 7030 BCDC 1604 B UNIVAC LARC

(Continued on next slide)

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Computer Generations

(Continued from previous slide..)

Generation (Period)	Key hardware technologies	Key software technologies	Key characteristics	Some rep. systems
$\begin{aligned} & \hline \text { Third } \\ & (1964-1975) \end{aligned}$	BICs with SSI and MSI technologies BLarger magnetic cores memory ß Larger capacity disks and magnetic tapes secondary storage BMinicomputers; upward compatible family of computers	BTimesharing operating system BStandardization of high-level programming languages BUnbundling of software from hardware	BFaster, smaller, more reliable, easier and cheaper to produce BCommercially, easier to use, and easier to upgrade than previous generation systems BScientific, commercial and interactive online applications	BIBM 360/370 BPDP-8 BPDP-11 BCDC 6600

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Conputer Generations

(Continued from previous slide..)

Generation (Period)	Key hardware Technologies	Key software technologies	Key characteristics	Some rep. systems
Fourth (1975-1989)	BICs with VLSI technology B Microprocessors; semiconductor memory B Larger capacity hard disks as in-built secondary storage B Magnetic tapes and floppy disks as portable storage media BPersonal computers BSupercomputers based on parallel vector processing symmetric and multiprocessing technologies BSpread of high-speed computer networks	BOperating systems for PCs with GUI and multiple windows on a single terminal screen $ß$ Multiprocessing OS with concurrent programming languages ßUNIX operating system with C programming language ß Object-oriented design and programming ßPC, Network-based, and supercomputing applications	BSmall, affordable, reliable, and easy to use PCs B More powerful and reliable mainframe systems and supercomputers BTotally general purpose machines BEasier to produce commercially ß Easier to upgrade BRapid software development possible	BIBM PC and its clones BApple II BTRS-80 B VAX 9000 BCRAY-1 BCRAY-2 BCRAY-X/MP

Computier Fundamentals: Pradeep K. Sinha \& Priti Sinha

Conputer Generations

(Continued from previous slide..)

Generation (Period)	Key hardware technologies	Key software technologies	Key characteristics	Some rep. systems
Fifth (1989Present)	BICs with ULSI technology ß Larger capacity main memory, hard disks with RAID support BOptical disks as portable read-only storage media B Notebooks, powerful desktop PCs and workstations ß Powerful servers, supercomputers BInternet B Cluster computing	ß Micro-kernel based, multithreading, distributed OS ß Parallel programming libraries like MPI \& PVM BJ AVA B World Wide Web B Multimedia, Internet applications B More complex supercomputing applications	ß Portable computers ß Powerful, cheaper, reliable, and easier to use desktop machines ß Powerful supercomputers BHigh uptime due to hot-pluggable components BTotally general purpose machines BEasier to produce commercially, easier to upgrade ß Rapid software development possible	ßIBM notebooks ß Pentium PCs BSUN Workstations ßIBM SP/2 BSGI Origin 2000 ß PARAM 10000

Electronic Devices Used in Somputers of Differente Generabions

(a) A Vacuum Tube
(b) A Transistor

(c) An IC Chip

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

B Computer
B Computer generations
B Computer Supported Cooperative Working (CSCW)
B Data
B Data processing
B Data processor
B First-generation computers
B Fourth-generation computers
B Garbage-in-garbage-out (GIGO)
ß Graphical User Interface (GUI)
B Groupware
B Information

B Integrated Circuit (IC)
B Large Scale Integration (VLSI)
B Medium Scale Integration (MSI)
B Microprocessor
B Personal Computer (PC)
B Second-generation computers
B Small Scale Integration (SSI)
B Stored program concept
B Third-generation computers
B Transistor
B Ultra Large Scale Integration (ULSI)
B Vacuum tubes

Chapter 01

Introduction to Computers
Computer Fundomentais - Pradeep K. Sinho \& Pitil Sinho

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Learning Objectives

In this chapter you will learn about:

B Computer
B Data processing
B Characteristic features of computers
B Computers' evolution to their present form
B Computer generations
B Characteristic features of each computer generation

Consputer

B The word computer comes from the word "compute", which means, "to calculate"

B Thereby, a computer is an electronic device that can perform arithmetic operations at high speed

B A computer is also called a data processor because it can store, process, and retrieve data whenever desired

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Data Processing

The activity of processing data using a computer is called data processing

Data is raw material used as input and information is processed data obtained as output of data processing

Characteristics of Confurers

(Continued from previous slide..)
4) Diligence: Computer is free from monotony, tiredness, and lack of concentration. It can continuously work for hours without creating any error and without grumbling
5) Versatility: Computer is capable of performing almost any task, if the task can be reduced to a finite series of logical steps
6) Power of Remembering: Computer can store and recall any amount of information because of its secondary storage capability. It forgets or looses certain information only when it is asked to do so
(Continued on next slide)

Characteristics of Confurers

(Continued from previous slide..)
7) No I.Q.: A computer does only what it is programmed to do. It cannot take its own decision in this regard
8) No Feelings: Computers are devoid of emotions. Their judgement is based on the instructions given to them in the form of programs that are written by us (human beings)

Eyolution of consputers

B Blaise Pascal invented the first mechanical adding machine in 1642
B Baron Gottfried Wilhelm von Leibniz invented the first calculator for multiplication in 1671
B Keyboard machines originated in the United States around 1880

B Around 1880, Herman Hollerith came up with the concept of punched cards that were extensively used as input media until late 1970s

Eyolution of conpliters

(Continued from previous slide..)
B Charles Babbage is considered to be the father of modern digital computers

B He designed "Difference Engine" in 1822
B He designed a fully automatic analytical engine in 1842 for performing basic arithmetic functions

B His efforts established a number of principles that are fundamental to the design of any digital computer

Some well known Early Conputers

B The Mark I Computer (1937-44)
B The Atanasoff-Berry Computer (1939-42)
B The ENIAC (1943-46)
B The EDVAC (1946-52)
B The EDSAC (1947-49)
B Manchester Mark I (1948)
B The UNIVAC I (1951)

B "Generation" in computer talk is a step in technology. It provides a framework for the growth of computer industry

B Originally it was used to distinguish between various hardware technologies, but now it has been extended to include both hardware and software

B Till today, there are five computer generations

(Continued from previous slide..)

Generation (Period)	Key hardware technologies	Key software technologies	$\begin{gathered} \text { Key } \\ \text { characteristics } \end{gathered}$	Some rep. systems
$\begin{aligned} & \hline \text { Third } \\ & (1964-1975) \end{aligned}$	BICs with SSI and MSI technologies BLarger magnetic cores memory BLarger capacity disks and magnetic tapes secondary storage BMinicomputers; upward compatible family of computers	BTimesharing operating system BStandardization of high-level programming languages BUnbundling of software from hardware	BFaster, smaller, more reliable, easier and cheaper to produce BCommercially, easier to use, and easier to upgrade than previous generation systems BScientific, commercial and interactive online applications	BIBM 360/370 BPDP-8 BPDP-11 BCDC 6600

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Computer Generations

(Continued from previous slide..)				
Generation (Period)	Key hardware Technologies	Key software technologies	Key characteristics	Some rep. systems
$\begin{aligned} & \text { Fourth } \\ & \text { (1975-1989) } \end{aligned}$	BICs with VLSI technology BMicroprocessors; semiconductor memory BLarger capacity dard disks as secondary storage Built BMagnetic tapes and floppy disks as portable storage media BPersonal computers BSupercomputers based on parallel procestor pymmetric and	BOperating systems for PCs with GUI and multiple windows on a single terminal screen B Multiprocessing OS with concurrent programming languages BUNIX operating system with C programming language BObject-oriented design and programming BPC, Network-based, and supercomputing applications	BSmall, affordable, reliable, and easy to use PCs BMore powerful and reliable mainframe systems and supercomputers BTotally general purpose machines ßEasier to produce commercially BEasier to upgrade BRapid software development possible	BIBM PC and its clones B Apple II BTRS-80 B VAX 9000 BCRAY-1 BCRAY-2 BCRAY-X/MP
			(Continue	d on next slide)
Ref Page 13 Chapter 1: Introduction to Computers Slide 14/17				

Computer Fundamentals!. Pradeep K. Sinha \& Priti Sinhar
Electronic Devices Used in Computers of Difierent Generations

(a) A Vacuum Tube
(b) A Transistor

(c) An IC Chip

\qquad
\qquad
\qquad

\qquad
\qquad
is Computer
, \qquad

B Computer generations
\qquad
B Characteristic features of each computer generation \qquad
\qquad

Ref Page 01 \qquad

The activity of processing data using a computer is called data processing

Data
Capture Data
Manipulate Data
Output Results
Information

Data is raw material used as input and information is processed data obtained as output of data processing
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Characteristics of computers

1) Automatic: Given a job, computer can work on it automatically without human interventions
2) Speed: Computer can perform data processing jobs very fast, usually measured in microseconds (10^{-6}), nanoseconds (10^{-9}), and picoseconds (10^{-12})
3) Accuracy: Accuracy of a computer is consistently high and the degree of its accuracy depends upon its design. Computer errors caused due to incorrect input data or unreliable programs are often referred to as Garbage-In-Garbage-Out (GIGO)
(Continued on next slide)

\qquad
\qquad

No Feelings: Computers are devoid of emotions. Their judgement is based on the instructions given to them in of programs that are written by us (human beings)
\qquad Slide 7/17
\qquad
\qquad
\qquad
\qquad

Eyolution of conjut ers	
	Blaise Pascal invented the first mechanical adding machine in 1642
	Baron Gottfried Wilhelm von Leibniz invented the first calculator for multiplication in 1671
	Keyboard machines originated in the United States around 1880
	Around 1880, Herman Hollerith came up with the concept of punched cards that were extensively used as input media until late 1970s
Ref Page 03	03 Chapter 1: Introduction to Computers Slide 8/17

\qquad
\qquad
Baron Gottfried Wilhelm von Leibniz invented the first calculator for multiplication in 1671
B Keyboard machines originated in the United States \qquad

Around 1880, Herman Hollerith came up with the concept of punched cards that were extensively used as input \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ref Page 05
Chapter 1: Introduction to Computer
Slide $11 / 1$ \qquad

Generation (Period)	Key hardware technologies	Key software technologies	Key characteristics	Some rep. systems
Third (1964-1975)	BICs with SSI and MSI technologies BLarger magnetic cores memory BLarger capacity disks and magnetic tapes secondary storage BMinicomputers: upward compatible family of computers	BTimesharing operating system BStandardization of high-level programming languages BUnbundling of software from hardware	BFaster, smaller, more reliable, easier and cheaper to produce BCommercially, easier to use, and easier to upgrade than previous generation systems BScientific, commercial and interactive online applications	BIBM 360/370 BPDP-8 BPDP-11 BCDC 6600

\qquad
\qquad

Computer Generations

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Key WOrds/ Phrases \qquad

B Computer
B Computer generations
Computer Supported Cooperative Working (CSCW)
B Data
Bata processing
B First-generation computers
B Fourth-generation computers
Garbage-in-garbat (GIGO)
(GUI)
Groupware
B Information
B Integrated Circuit (IC)
B Large Scale Integration (VLSI)
edium Scale Integration (MSI)
B Personal Computer (PC)
B Second-generation computers
B Small Scale Integration (SSI)
B Stored program concept
B Third-generation computers
B Transisto
S Ultra Large Scale Integration
B Vacuum tubes
\qquad
\qquad
\qquad
\qquad
\qquad

Chapter 02

Basic Computer Organization

Computer Fundamentals - Pradeep K. Sinha \& Priti Sinha

Learnisg Objectlyes

In this chapter you will learn about:

ß Basic operations performed by all types of computer systems
B Basic organization of a computer system
B Input unit and its functions
B Output unit and its functions
B Storage unit and its functions
B Types of storage used in a computer system

Learning Objectives

(Continued from previous slide..)

B Arithmetic Logic Unit (ALU)

B Control Unit (CU)

B Central Processing Unit (CPU)

B Computer as a system

The five Basje Operaitons of̈ a Confutier Sysienn

ß Inputting. The process of entering data and instructions into the computer system
ß Storing. Saving data and instructions to make them readily available for initial or additional processing whenever required
ß Processing. Performing arithmetic operations (add, subtract, multiply, divide, etc.) or logical operations (comparisons like equal to, less than, greater than, etc.) on data to convert them into useful information

The five B'asjc Operaijons of̈ a Conpurer Sysien

B Outputting. The process of producing useful information or results for the user such as a printed report or visual display

B Controlling. Directing the manner and sequence in which all of the above operations are performed

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Jnput Unte

An input unit of a computer system performs the following functions:

1. It accepts (or reads) instructions and data from outside world
2. It converts these instructions and data in computer acceptable form
3. It supplies the converted instructions and data to the computer system for further processing

Owtput Unit

An output unit of a computer system performs the following functions:

1. It accepts the results produced by the computer, which are in coded form and hence, cannot be easily understood by us
2. It converts these coded results to human acceptable (readable) form
3. It supplies the converted results to outside world

Storage Unit

The storage unit of a computer system holds (or stores) the following :

1. Data and instructions required for processing (received from input devices)
2. Intermediate results of processing
3. Final results of processing, before they are released to an output device

なwo 『Уpes orstorage

B Primary storage

B Used to hold running program instructions
B Used to hold data, intermediate results, and results of ongoing processing of job(s)
B Fast in operation
B Small Capacity
B Expensive
B Volatile (looses data on power dissipation)

なwo 『】pes okstorage

（Continued from previous slide．．）

B Secondary storage

B Used to hold stored program instructions
B Used to hold data and information of stored jobs
B Slower than primary storage
B Large Capacity
B Lot cheaper that primary storage
B Retains data even without power

Arithmetic Eogic Unit (ALU)

Arithmetic Logic Unit of a computer system is the place where the actual executions of instructions takes place during processing operation

Control Unft (CU)

Control Unit of a computer system manages and coordinates the operations of all other components of the computer system

Central Processing Unit ((Sv)

Arithmetic Logic Unit (ALU)
Control Unit (CU)
:---:
Processing
Unit (CPU)

B It is the brain of a computer system
B It is responsible for controlling the operations of all other units of a computer system

The system Soncept

A system has following three characteristics:

1. A system has more than one element
2. All elements of a system are logically related
3. All elements of a system are controlled in a manner to achieve the system goal

A computer is a system as it comprises of integrated components (input unit, output unit, storage unit, and CPU) that work together to perform the steps called for in the executing program

Key WordS/ Rhiccees

B Arithmetic Logic Unit (ALU)
B Auxiliary storage
B Central Processing Unit (CPU)
B Computer system
B Control Unit (CU)
B Controlling
B Input interface
B Input unit
B Inputting
B Main memory

B Output interface
B Output unit
B Outputting
$ß$ Primate storage
B Processing
B Secondary storage
B Storage unit
B Storing
B System

Chapter 02

Basic Computer Organization

Computer Fundamentals - Pradeep K. Sinha \& Pirili Sinha

Learning Objectives

In this chapter you will learn about:
B Basic operations performed by all types of computer systems
B Basic organization of a computer system
B Input unit and its functions
B Output unit and its functions
B Storage unit and its functions
B Types of storage used in a computer system

Learning Objectives

(Continued from previous slide..)

B Arithmetic Logic Unit (ALU)

B Control Unit (CU)

B Central Processing Unit (CPU)

B Computer as a system

The five Basic Operations of a Computer sysiens

B Inputting. The process of entering data and instructions into the computer system

B Storing. Saving data and instructions to make them readily available for initial or additional processing whenever required

B Processing. Performing arithmetic operations (add, subtract, multiply, divide, etc.) or logical operations (comparisons like equal to, less than, greater than, etc.) on data to convert them into useful information
(Continued on next slide)

The Five Basic Operations of a Computer System

B Outputting. The process of producing useful information or results for the user such as a printed report or visual display
B Controlling. Directing the manner and sequence in which all of the above operations are performed

Computer Fundamentals: Pradeep K. Simha \& Priti Sinha
 Basje Organtzation of゙ a Conspりier Sysien

Input Unit

An input unit of a computer system performs the following functions:

1. It accepts (or reads) instructions and data from outside world
2. It converts these instructions and data in computer acceptable form
3. It supplies the converted instructions and data to the computer system for further processing

An output unit of a computer system performs the following functions:

1. It accepts the results produced by the computer, which are in coded form and hence, cannot be easily understood by us
2. It converts these coded results to human acceptable (readable) form
3. It supplies the converted results to outside world

Storage Unti

The storage unit of a computer system holds (or stores) the following :

1. Data and instructions required for processing (received from input devices)
2. Intermediate results of processing
3. Final results of processing, before they are released to an output device

Computer Fundamentals: Pradeep K. Simha \& Priti Sinha

Two 「ypes ofstorage

B Primary storage

B Used to hold running program instructions
B Used to hold data, intermediate results, and results of ongoing processing of job(s)
B Fast in operation
B Small Capacity
B Expensive
B Volatile (looses data on power dissipation)

Computer Fundamentals. Pradeep K. Sinha \& Priti Sinha-

Two 「ypes orstorage

(Continued from previous slide..)
B Secondary storage

B Used to hold stored program instructions
B Used to hold data and information of stored jobs
B Slower than primary storage
B Large Capacity
B Lot cheaper that primary storage
B Retains data even without power

Arithmeticlogic Unit (ALV)

Arithmetic Logic Unit of a computer system is the place where the actual executions of instructions takes place during processing operation

Control Unte (cU)

Control Unit of a computer system manages and coordinates the operations of all other components of the computer system

Central Processing Unit (CPV)

Arithmetic Logic Unit (ALU)	
Control Unit (CU)	$=$Central Processing Unit (CPU)

B It is the brain of a computer system
B It is responsible for controlling the operations of all other units of a computer system

The Systern Soncept

A system has following three characteristics:

1. A system has more than one element
2. All elements of a system are logically related
3. All elements of a system are controlled in a manner to achieve the system goal

A computer is a system as it comprises of integrated components (input unit, output unit, storage unit, and CPU) that work together to perform the steps called for in the executing program

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Key Words/ Phireses

B Arithmetic Logic Unit (ALU)
B Auxiliary storage
B Central Processing Unit (CPU)
B Computer system
B Control Unit (CU)
B Controlling
B I nput interface
B Input unit
B Inputting
B Main memory

B Output interface
B Output unit
B Outputting
ß Primate storage
ß Processing
ß Secondary storage
B Storage unit
B Storing
B System

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
Basic operations performed by all types of computer
B Basic organization of a computer system \qquad
mput and furtions
B
ge unit and its function \qquad
\qquad
\qquad

Ref. Page 15 Slide 2/16

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

015	のut Unfis
An output unit of a computer system performs the following functions: 1. It accepts the results produced by the computer, which are in coded form and hence, cannot be easily understood by us 2. It converts these coded results to human acceptable (readable) form 3. It supplies the converted results to outside world	
ef. Page 16	apter 2: Basic Comouter Oraanization

\qquad
\qquad
\qquad
\qquad
(readable) form
\qquad
\qquad

Ref. Page 16

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
y storage
\qquad
\qquad
\qquad

Ref. Page 17 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
A system has follow ing three characteristics:

1. A system has more than one element
2. All elements of a system are logically related
3. All elements of a system are controlled in a manner to prageep k. Smina gunin sinma
achieve the system goal
A computer is a system as it comprises of integrated
components (input unit, output unit, storage unit, and CPU)
that work together to perform the steps called for in the
executing program

Chapter 03

Number Systems
Computer Fundamentals - Pradeep K. Sinha \& Priti Sinha

Learning Objectives

In this chapter you will learn about:

B Non-positional number system
B Positional number system
B Decimal number system
B Binary number system
B Octal number system
B Hexadecimal number system

Learning Objectives

(Continued from previous slide..)
B Convert a number's base
B Another base to decimal base
\& Decimal base to another base
ß Some base to another base
B Shortcut methods for converting
B Binary to octal number
B Octal to binary number
B Binary to hexadecimal number
\& Hexadecimal to binary number
B Fractional numbers in binary number system

Nunaber รystenns

Two types of number systems are:

B Non-positional number systems

B Positional number systems

Computer Fundamentals：Pradeep K．Sinha \＆Priti Sinha

NO』－positionaj リunsber S゙yデ enss

B Characteristics
B Use symbols such as I for 1，II for 2，III for 3，IIII for 4，IIIII for 5，etc
is Each symbol represents the same value regardless of its position in the number
B The symbols are simply added to find out the value of a particular number

B Difficulty

B It is difficult to perform arithmetic with such a number system

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

positionglyuncoer systens

B Characteristics

B Use only a few symbols called digits
ß These symbols represent different values depending on the position they occupy in the number

positional number systens

(Continued from previous slide..)
B The value of each digit is determined by:

1. The digit itself
2. The position of the digit in the number
3. The base of the number system
(base $=$ total number of digits in the number system)
$ß$ The maximum value of a single digit is always equal to one less than the value of the base

Decinal Number Systen

Characteristics

B A positional number system
B Has 10 symbols or digits ($0,1,2,3,4,5,6,7$, 8,9 . Hence, its base $=10$
B The maximum value of a single digit is 9 (one less than the value of the base)
B Each position of a digit represents a specific power of the base (10)
B We use this number system in our day-to-day life

Decinal Number కystens

(Continued from previous slide..)

Example

$$
\begin{aligned}
2586_{10} & =\left(2 \times 10^{3}\right)+\left(5 \times 10^{2}\right)+\left(8 \times 10^{1}\right)+\left(6 \times 10^{0}\right) \\
& =2000+500+80+6
\end{aligned}
$$

Binary Number Systens

Characteristics

B A positional number system
B Has only 2 symbols or digits (0 and 1). Hence its base $=2$

B The maximum value of a single digit is 1 (one less than the value of the base)
B Each position of a digit represents a specific power of the base (2)

B This number system is used in computers

Binary Number Systens

(Continued from previous slide..)

Example

$$
\begin{aligned}
10101_{2} & =\left(1 \times 2^{4}\right)+\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right) \times\left(1 \times 2^{0}\right) \\
& =16+0+4+0+1 \\
& =21_{10}
\end{aligned}
$$

Representing Numbers in Different Nunsoer Systenns

In order to be specific about which number system we are referring to, it is a common practice to indicate the base as a subscript. Thus, we write:

$$
10101_{2}=21_{10}
$$

BH

B Bit stands for binary digit

B A bit in computer terminology means either a 0 or a 1

B A binary number consisting of n bits is called an n-bit number

Octal Nunder Sysicen

Characteristics

B A positional number system
B Has total 8 symbols or digits ($0,1,2,3,4,5,6,7$). Hence, its base $=8$
B The maximum value of a single digit is 7 (one less than the value of the base
B Each position of a digit represents a specific power of the base (8)

Octal Nussper Sysiens

(Continued from previous slide..)
B Since there are only 8 digits, 3 bits $\left(2^{3}=8\right)$ are sufficient to represent any octal number in binary

Example

$$
\begin{aligned}
& 2057_{8}=\left(2 \times 8^{3}\right)+\left(0 \times 8^{2}\right)+\left(5 \times 8^{1}\right)+\left(7 \times 8^{0}\right) \\
& \quad=1024+0+40+7 \\
& \quad=1071_{10}
\end{aligned}
$$

Hexadecimandunber Systen

Characteristics

B A positional number system
B Has total 16 symbols or digits ($0,1,2,3,4,5,6,7$, 8, 9, A, B, C, D, E, F). Hence its base $=16$
B The symbols A, B, C, D, E and F represent the decimal values $10,11,12,13,14$ and 15 respectively
B The maximum value of a single digit is 15 (one less than the value of the base)

HexadecjualNunsber Sysicens

(Continued from previous slide..)
B Each position of a digit represents a specific power of the base (16)
B Since there are only 16 digits, 4 bits ($2^{4}=16$) are sufficient to represent any hexadecimal number in binary

Example

$$
\begin{aligned}
1 A F_{16} & =\left(1 \times 16^{2}\right)+\left(A \times 16^{1}\right)+\left(F \times 16^{0}\right) \\
& =1 \times 256+10 \times 16+15 \times 1 \\
& =256+160+15 \\
& =431_{10}
\end{aligned}
$$

Converting a Nunder of Anctifer Buse so a Decinsal リunsjér

Method

Step 1: Determine the column (positional) value of each digit

Step 2: Multiply the obtained column values by the digits in the corresponding columns

Step 3: Calculate the sum of these products

Converting a Nunger of Anséner Buse so al Decinagl Junstoer

(Continued from previous slide..)
Example
$4706_{8}=?_{10}$
Common values multiplied by the corresponding $=4 \times 512+7 \times 64+0+6 \times 1$ digits
$=2048+448+0+6 \longleftarrow$ Sum of these $=2502_{10}$

Converting a Desjnal Number to a JUnober of A』SOLher Baje

Division-Remainder Method

Step 1: Divide the decimal number to be converted by the value of the new base

Step 2: Record the remainder from Step 1 as the rightmost digit (least significant digit) of the new base number

Step 3: Divide the quotient of the previous divide by the new base

Converting a Desjnal Nuns'er to a JUnober of Another Base

(Continued from previous slide..)

Step 4: Record the remainder from Step 3 as the next digit (to the left) of the new base number

Repeat Steps 3 and 4, recording remainders from right to left, until the quotient becomes zero in Step 3

Note that the last remainder thus obtained will be the most significant digit (MSD) of the new base number

Converting a Desjnal Number to a Jumber of AかOther Baje

(Continued from previous slide..)

Example

$$
952_{10}=?_{8}
$$

Solution:

$8 |$| 952 | Remainder | |
| :--- | :--- | :--- |
| 119 | s | 0 |
| 14 | | 7 |
| 1 | | 6 |
| | 0 | |
| | | 1 |

Hence, $952_{10}=1670_{8}$

Computer Fundamentals：Pradeep K．Sinha \＆Priti Sinha
Convertng a Nundér ór Some Éase io a junnder of Another Ėまコこ

Method
Step 1：Convert the original number to a decimal number（base 10）

Step 2：Convert the decimal number so obtained to the new base number

Convertng a Nunder of́sonse B＇ase do a junnder

 of Another Bココこ（Continued from previous slide．．）

Example

$$
545_{6}=?_{4}
$$

Solution：
Step 1：Convert from base 6 to base 10

$$
\begin{aligned}
545_{6}=5 \times & 6^{2}+4 \times 6^{1}+5 \times 6^{0} \\
& =5 \times 36+4 \times 6+5 \times 1 \\
& =180+24+5 \\
& =209_{10}
\end{aligned}
$$

Converting a Nunnder of́some Ḃase to a junnéer

 ○゙ Another E゙コゴ（Continued from previous slide．．）
Step 2：Convert 209_{10} to base 4

4 | 209 | Remainders |
| :--- | ---: |
| $\frac{52}{13}$ | 1 |
| $\frac{3}{13}$ | 0 |
| 0 | 1 |
| | 3 |

Hence， $209_{10}=3101_{4}$
So， $545_{6}=209_{10}=3101_{4}$
Thus， $545{ }_{6}=3101_{4}$

Computer Fundamentals:. Pradeep K. Sinha \& Priti Sinha

Shoricut Method for Conyerijng a Einary jusnéer to jis Egujvalent Octaj Junster

Method

Step 1: Divide the digits into groups of three starting from the right

Step 2: Convert each group of three binary digits to one octal digit using the method of binary to decimal conversion

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Shortcut Method for conversing a Binary jursper

(Continued from previous slide..)

Example

$$
1101010_{2}=?_{8}
$$

Step 1: Divide the binary digits into groups of 3 starting from right

$$
\underline{001} \underline{101} \underline{010}
$$

Step 2: Convert each group into one octal digit

$$
\begin{aligned}
& 001_{2}=0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=1 \\
& 101_{2}=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=5 \\
& 010_{2}=0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}=2
\end{aligned}
$$

Hence, $1101010_{2}=152_{8}$

Computer Fundamentals: Pradeep K. Simha \& Priti Sinhan

Shoricut Methodfor Convercing an Oesal

Method
Step 1: Convert each octal digit to a 3 digit binary number (the octal digits may be treated as decimal for this conversion)

Step 2: Combine all the resulting binary groups (of 3 digits each) into a single binary number

Shoricut Methodfor Conyeringe an Oetal

(Continued from previous slide..)

Example

$$
562_{8}=?_{2}
$$

Step 1: Convert each octal digit to 3 binary digits

$$
5_{8}=101_{2}, \quad 6_{8}=110_{2}, \quad 2_{8}=010_{2}
$$

Step 2: Combine the binary groups

$$
562_{8}=\frac{101}{5} \quad \frac{110}{6} \quad \frac{010}{2}
$$

Hence, $562_{8}=101110010_{2}$

Shorscut Method for Convercing a Binary

Method
Step 1: Divide the binary digits into groups of four starting from the right

Step 2: Combine each group of four binary digits to one hexadecimal digit

Shoricut vethodfor Conversing a Binary

Nunsber to ju Egnjvalent flexaclecinajlyunnger

(Continued from previous slide..)

Example

$111101_{2}=?_{16}$
Step 1: Divide the binary digits into groups of four starting from the right

$$
\underline{0011}
$$

Step 2: Convert each group into a hexadecimal digit $0011_{2}=0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=3_{10}=3_{16}$ $1101_{2}=1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=3_{10}=D_{16}$

Hence, $111101_{2}=3 D_{16}$

Shoricut Method for Conyercing a flexaclecinsal

Method
Step 1: Convert the decimal equivalent of each hexadecimal digit to a 4 digit binary number

Step 2: Combine all the resulting binary groups (of 4 digits each) in a single binary number

Shoricut Method for Converinne a flexaclecinsal

(Continued from previous slide..)

Example

$$
2 \mathrm{AB}_{16}=?_{2}
$$

Step 1: Convert each hexadecimal digit to a 4 digit binary number

$$
\begin{aligned}
& 2_{16}=2_{10}=0010_{2} \\
& \mathrm{~A}_{16}=10_{10}=1010_{2} \\
& \mathrm{~B}_{16}=11_{10}=1011_{2}
\end{aligned}
$$

Sinoricur vetinod for Convercing a flexaclecinsal

(Continued from previous slide..)
Step 2: Combine the binary groups
$2 \mathrm{AB}_{16}=\frac{0010}{2} \quad \frac{1010}{\mathrm{~A}} \quad \frac{1011}{\mathrm{~B}}$

Hence, $2 \mathrm{AB}_{16}=001010101011_{2}$

Fractional Nuncers

Fractional numbers are formed same way as decimal number system
In general, a number in a number system with base b would be written as:
$a_{n} a_{n-1} \ldots a_{0} \cdot a_{-1} a_{-2} \ldots a_{-m}$
And would be interpreted to mean:
$a_{n} \times b^{n}+a_{n-1} \times b^{n-1}+\ldots+a_{0} \times b^{0}+a_{-1} \times b^{-1}+a_{-2} \times b^{-2}+$ $\ldots+a_{-m} \times b^{-m}$

The symbols $a_{n}, a_{n-1}, \ldots, a_{-m}$ in above representation should be one of the b symbols allowed in the number system

Fornajejon of fractional Nunsders is

	Binary Point								
Position	4	3	2	1	0	. -1	-2	-3	-4
Position Value	2^{4}	2^{3}	2^{2}	2^{1}	20	2^{-1}	2^{-2}	2^{-3}	2^{-4}
Quantity Represented	16	8	4	2	1	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$

戸orsnaijon of fractional Nunnders is

(Continued from previous slide..)

Example

$$
\begin{aligned}
110.101_{2} & =1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}+1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3} \\
& =4+2+0+0.5+0+0.125 \\
& =6.625_{10}
\end{aligned}
$$

	Octal Point							
	3	2	1	0	\bullet	-1	-2	-3
Position	3	8^{3}	8^{1}	8^{0}	8^{-1}	8^{-2}	8^{-3}	
Position Value	8^{3}				1	$1 / 8$	$1 / 64$	$1 / 512$
Quantity Represented	512	64	8	1				

Fornabijon of अsacijonal Nonnders in

(Continued from previous slide..)

Example

$$
\begin{aligned}
127.54_{8} & =1 \times 8^{2}+2 \times 8^{1}+7 \times 8^{0}+5 \times 8^{-1}+4 \times 8^{-2} \\
& =64+16+7+5 / 8+4 / 64 \\
& =87+0.625+0.0625 \\
& =87.6875_{10}
\end{aligned}
$$

Key WordS/ Phicoses

```
B Base
& Binary number system
B Binary point
B Bit
B Decimal number system
B Division-Remainder technique
B Fractional numbers
ß Hexadecimal number system
B Base
A Binary number system
B Binary point
B Bit
ß Decimal number system
ß Division-Remainder technique
B Fractional numbers
B Hexadecimal number system
```

B Least Significant Digit (LSD)
B Memory dump
B Most Significant Digit (MSD)
B Non-positional number system
is Number system
B Octal number system
B Positional number system

Computier Fundamentals!. Prodeep K. Sinha \& Priti Sinhar

Learning Objectives

In this chapter you will learn about:

B Non-positional number system
B Positional number system
B Decimal number system
B Binary number system
B Octal number system
B Hexadecimal number system

Learning Objectives

(Continued from previous slide..)
B Convert a number's base
B Another base to decimal base
B Decimal base to another base
B Some base to another base
B Shortcut methods for converting
B Binary to octal number
B Octal to binary number
B Binary to hexadecimal number
B Hexadecimal to binary number
B Fractional numbers in binary number system

Number Systems

Two types of number systems are:

A Non-positional number systems
B Positional number systems

Non-positional Nunsber Syジenss

B Characteristics
B Use symbols such as I for 1, II for 2, III for 3, IIII for 4, IIII for 5, etc
B Each symbol represents the same value regardless of its position in the number

B The symbols are simply added to find out the value of a particular number

B Difficulty
B It is difficult to perform arithmetic with such a number system

positional Number systems

B Characteristics

B Use only a few symbols called digits

B These symbols represent different values depending on the position they occupy in the number

positionalNunnoer Systens

(Continued from previous slide..)
B The value of each digit is determined by:

1. The digit itself
2. The position of the digit in the number
3. The base of the number system
(base $=$ total number of digits in the number system)

B The maximum value of a single digit is always equal to one less than the value of the base

Decinal Nunber 5ysters

Characteristics

B A positional number system
B Has 10 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7, $8,9)$. Hence, its base $=10$
B The maximum value of a single digit is 9 (one less than the value of the base)
B Each position of a digit represents a specific power of the base (10)
B We use this number system in our day-to-day life

Decinal Number Systen

(Continued from previous slide..)

Example

$$
\begin{aligned}
2586_{10} & =\left(2 \times 10^{3}\right)+\left(5 \times 10^{2}\right)+\left(8 \times 10^{1}\right)+\left(6 \times 10^{0}\right) \\
& =2000+500+80+6
\end{aligned}
$$

Binary Number system

Characteristics

B A positional number system
B Has only 2 symbols or digits (0 and 1). Hence its base $=2$

B The maximum value of a single digit is 1 (one less than the value of the base)
B Each position of a digit represents a specific power of the base (2)
B This number system is used in computers

Binary Nomber syerien

(Continued from previous slide..)

Example

$$
\begin{aligned}
10101_{2} & =\left(1 \times 2^{4}\right)+\left(0 \times 2^{3}\right)+\left(1 \times 2^{2}\right)+\left(0 \times 2^{1}\right) \times\left(1 \times 2^{0}\right) \\
& =16+0+4+0+1 \\
& =21_{10}
\end{aligned}
$$

Representing Nundérs in Different junsder Sysiems

In order to be specific about which number system we are referring to, it is a common practice to indicate the base as a subscript. Thus, we write:

$$
10101_{2}=21_{10}
$$

Bit

B Bit stands for binary digit

B A bit in computer terminology means either a 0 or a 1

B A binary number consisting of n bits is called an n-bit number

Octal Numbersystem

Characteristics

B A positional number system
B Has total 8 symbols or digits (0, 1, 2, 3, 4, 5, 6, 7). Hence, its base $=8$

B The maximum value of a single digit is 7 (one less than the value of the base
B Each position of a digit represents a specific power of the base (8)

Octal Numbersystem

(Continued from previous slide..)
B Since there are only 8 digits, 3 bits $\left(2^{3}=8\right)$ are sufficient to represent any octal number in binary

Example

$$
\begin{aligned}
& 2057_{8}=\left(2 \times 8^{3}\right)+\left(0 \times 8^{2}\right)+\left(5 \times 8^{1}\right)+\left(7 \times 8^{0}\right) \\
& \quad=1024+0+40+7 \\
& =1071_{10}
\end{aligned}
$$

HexadecimanNunber 5ysten

Characteristics

B A positional number system
B Has total 16 symbols or digits ($0,1,2,3,4,5,6,7$, 8, 9, A, B, C, D, E, F). Hence its base $=16$
B The symbols A, B, C, D, E and F represent the decimal values $10,11,12,13,14$ and 15 respectively
B The maximum value of a single digit is 15 (one less than the value of the base)

HexadecinamNunber Systen

(Continued from previous slide..)
B Each position of a digit represents a specific power of the base (16)
B Since there are only 16 digits, 4 bits $\left(2^{4}=16\right)$ are sufficient to represent any hexadecimal number in binary

Example

$$
\begin{aligned}
1 \mathrm{AF}_{16} & =\left(1 \times 16^{2}\right)+\left(\mathrm{A} \times 16^{1}\right)+\left(\mathrm{F} \times 16^{0}\right) \\
& =1 \times 256+10 \times 16+15 \times 1 \\
& =256+160+15 \\
& =431_{10}
\end{aligned}
$$

Computer Fundamentals! Pradeep K. Sinha \&y Priti Sinhar
Convering a Nunder of Another Base jo a
Decimel Junnér

Method

Step 1: Determine the column (positional) value of each digit

Step 2: Multiply the obtained column values by the digits in the corresponding columns

Step 3: Calculate the sum of these products

Converting a Nunaber of Another Base to a

Decinajl Junneer
(Continued from previous slide..)

Example

$$
\begin{array}{rlrl}
4706_{8} & =?_{10} & & \begin{array}{l}
\text { Common } \\
\text { values }
\end{array} \\
4706_{8} & =4 \times 8^{3}+7 \times 8^{2}+0 \times 8^{1}+6 \times 8^{0} & \begin{array}{l}
\text { multiplied } \\
\text { by the }
\end{array} \\
& =4 \times 512+7 \times 64+0+6 \times 1 & \begin{array}{l}
\text { corresponding } \\
\text { digits }
\end{array} \\
& =2048+448+0+6 \longleftarrow \text { Sum of these } \\
& =2502_{10} & \text { products }
\end{array}
$$

Convering a Desinal Nunster to a Junnder of" Another Base

Division-Remainder Method

Step 1: Divide the decimal number to be converted by the value of the new base

Step 2: Record the remainder from Step 1 as the rightmost digit (least significant digit) of the new base number

Step 3: Divide the quotient of the previous divide by the new base

Converting a Desinal Number to a Number of

Anotiner Base

(Continued from previous slide..)
Step 4: Record the remainder from Step 3 as the next digit (to the left) of the new base number

Repeat Steps 3 and 4, recording remainders from right to left, until the quotient becomes zero in Step 3

Note that the last remainder thus obtained will be the most significant digit (MSD) of the new base number

Convering a Desinal Nunster to a Junnéer of"

AnOther Bave

Example

$$
952_{10}=?_{8}
$$

Solution:

8 | | 952 | Remainder |
| ---: | :--- | :--- |
| 119 | s | 0 |
| 14 | | 7 |
| 1 | | 6 |
| 0 | | 1 |

Hence, $952_{10}=1670_{8}$

Converting a Nunder of Some Diase to a junnéer ○f Another E＇まコニ

Method

Step 1：Convert the original number to a decimal number（base 10）

Step 2：Convert the decimal number so obtained to the new base number

Computer Fundamentals：Pradeep K．Sinha \＆Priti Sinha
Convering a Nunder of Some Ḃase io a jundéer of Another B＇ase

Example

$$
545_{6}=?_{4}
$$

Solution：
Step 1：Convert from base 6 to base 10

$$
\begin{aligned}
& 545_{6}=5 \times 6^{2}+4 \times 6^{1}+5 \times 6^{0} \\
&=5 \times 36+4 \times 6+5 \times 1 \\
&=180+24+5 \\
&=209_{10}
\end{aligned}
$$

Computer Fundamentals：Pradeep K．Sinha \＆Prifi Sinha

Converting a Nunaber of Some B＇ase to a Jumber

 ○f Another B゙コゴ（Continued from previous slide．．）
Step 2：Convert 209_{10} to base 4

4 | 209 | Remainders |
| :--- | ---: |
| $\frac{52}{13}$ | 1 |
| 1 | 0 |
| 3 | 1 |
| 0 | 3 |

Hence， $209_{10}=3101_{4}$
So， $545_{6}=209_{10}=3101_{4}$
Thus， $545_{6}=3101_{4}$

Computer Fundamentals：Pradeep K．Simha \＆Priti Sinha
Shoricut Method for Converting a Binary Nunber to fis Eguivalert Octal Number

Method

Step 1：Divide the digits into groups of three starting from the right

Step 2：Convert each group of three binary digits to one octal digit using the method of binary to decimal conversion

Shoricut Method for Converting a Binary Nunber

to jis Egujajant Octal Number
(Continued from previous slide..)

Example

$1101010_{2}=?_{8}$
Step 1: Divide the binary digits into groups of 3 starting from right
$001 \quad 101 \quad 010$
Step 2: Convert each group into one octal digit
$001_{2}=0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=1$
$101_{2}=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=5$ $010_{2}=0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}=2$

Hence, $1101010_{2}=152_{8}$

Shoricut Method for Converting an Oestal Number to Jis Egnivalent Einary Nunster

Method

Step 1: Convert each octal digit to a 3 digit binary number (the octal digits may be treated as decimal for this conversion)

Step 2: Combine all the resulting binary groups (of 3 digits each) into a single binary number

Computier Fundamentals: Pradeep K. Sinha \& Priti Sinha

Shortut Methodfor Converting an Ostal

 Number to Jis Egnjyalこni Binary Number(Continued from previous slide..)

Example

$562{ }_{8}=?_{2}$
Step 1: Convert each octal digit to 3 binary digits

$$
5_{8}=101_{2}, \quad 6_{8}=110_{2}, \quad 2_{8}=010_{2}
$$

Step 2: Combine the binary groups

$$
\begin{array}{lll}
5 & 6 & 2
\end{array}
$$

Hence, $562_{8}=101110010_{2}$

Shoricut Methodfor converting a binary Number to jis Egnjvalent flexadecimall Number

Method
Step 1: Divide the binary digits into groups of four starting from the right

Step 2: Combine each group of four binary digits to one hexadecimal digit

Shoricut Methodfor Converting a Binary Number to jis Egnjualerie flexadecinaj Number
(Continued from previous slide..)

Example

$111101_{2}=?_{16}$
Step 1: Divide the binary digits into groups of four starting from the right
$0011 \quad 1101$
Step 2: Convert each group into a hexadecimal digit $0011_{2}=0 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}=3_{10}=3_{16}$ $1101_{2}=1 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=3_{10}=D_{16}$

Hence, $111101_{2}=3 D_{16}$

Shortedt wethod for converthg a flexadecinal

Method

Step 1: Convert the decimal equivalent of each hexadecimal digit to a 4 digit binary number

Step 2: Combine all the resulting binary groups (of 4 digits each) in a single binary number

Shortcut Method for Converting a flexadecinal

(Continued from previous slide..)

Example

$2 \mathrm{AB}_{16}=?_{2}$
Step 1: Convert each hexadecimal digit to a 4 digit binary number
$2_{16}=2_{10}=0010_{2}$
$\mathrm{A}_{16}=10_{10}=1010_{2}$
$\mathrm{B}_{16}=11_{10}=1011_{2}$

Shortcut Method for Convering a flexadecinal

(Continued from previous slide..)
Step 2: Combine the binary groups

$$
2 \mathrm{AB}_{16}=\frac{0010}{2} \quad \frac{1010}{\mathrm{~A}} \quad \frac{1011}{\mathrm{~B}}
$$

Hence, $2 \mathrm{AB}_{16}=001010101011_{2}$

Fractionaljuncoers

Fractional numbers are formed same way as decimal number system

In general，a number in a number system with base b would be written as：
$a_{n} a_{n-1} \ldots a_{0} \cdot a_{-1} a_{-2} \ldots a_{-m}$
And would be interpreted to mean：
$a_{n} \times b^{n}+a_{n-1} \times b^{n-1}+\ldots+a_{0} \times b^{0}+a_{-1} \times b^{-1}+a_{-2} \times b^{-2}+$ $\ldots+a_{-m} \times b^{-m}$

The symbols $a_{n}, a_{n-1}, \ldots, a_{-m}$ in above representation should be one of the b symbols allowed in the number system

Computer Fundamentals：Pradeep K．Sinha \＆Priti Sinha
 Binary Nunster ジyジさens（Eransple）

	Binary Point								
Position	4	3	2	1	0	－1	－2	－3	－4
Position Value	2^{4}	2^{3}	2^{2}	2^{1}	20	2^{-1}	2^{-2}	2－3	$2-4$
Quantity Represented	16	8	4	2	1	$1 / 2$	$1 / 4$	$1 / 8$	$1 / 16$

Formation of fractional Numbers in

Binary Number Sysrem (Example)
(Continued from previous slide..)

Example

$$
\begin{aligned}
110.101_{2} & =1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}+1 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3} \\
& =4+2+0+0.5+0+0.125 \\
& =6.625_{10}
\end{aligned}
$$

Compuier Fundamentals: Pradeep K. Sinha Ey Priti Sinhar
Forsnation of अractional Nunsters in

	Octal Point							
	3	2	1	0	\bullet	-1	-2	-3
Position	8^{3}	8^{2}	8^{1}	8^{0}	8^{-1}	8^{-2}	8^{-3}	
Position Value	512	64	8	1	$1 / 8$	$1 / 64$	$1 / 512$	
Quantity Represented								

Forsnation of अractional nunsders in

(Continued from previous slide..)

Example

$$
\begin{aligned}
127.54_{8} & =1 \times 8^{2}+2 \times 8^{1}+7 \times 8^{0}+5 \times 8^{-1}+4 \times 8^{-2} \\
& =64+16+7+5 / 8+4 / 64 \\
& =87+0.625+0.0625 \\
& =87.6875_{10}
\end{aligned}
$$

Key Words/ Rinases
ß Base
B Binary number system
B Binary point
B Bit
ß Decimal number system
B Division-Remainder technique
B Fractional numbers
\& Hexadecimal number system
ß Least Significant Digit (LSD)
ß Memory dump
B Most Significant Digit (MSD)
B Non- positional number system
ß Number system
B Octal number system
B Positional number system

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
Non-positional number system
B Desimal num syster
\qquad
B Decimal number system
number system \qquad
Octal number system
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad of its position in the number \qquad
B Difficulty
B It is difficult to perform arithmetic with such a \qquad number system

positional Nuntoer Systens

B Characteristics
B Use only a few symbols called digits

B These symbols represent different values depending on the position they occupy in the number
(Continued on next slide)

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
B The maximum value of a single digit is 9 (one
\qquad power of the base (10)
\qquad

Ref Page 21

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Slide $11 / 40$ \qquad
Representing Numbers in Different Nussiber
Systems
In order to be specific about which number system we
are referring to, it is a common practice to indicate the
base as a subscript. Thus, we write:

$$
10101_{2}=21_{10}
$$

Ref Page 21

\qquad

$0 ¢ 5$	NUNDEr Syジ゙ens
Characteristics	
B A positional number system	
B Has total 8 symbols or digits（ $0,1,2,3,4,5,6,7$ ）． Hence，its base $=8$	
B The maximum value of a single digit is 7 （one less than the value of the base B Each position of a digit represents a specific power of the base（8）	
（Continued on nexts side）	
Ref Page 22	Chapter 3：Number Systems Slide 14

\qquad
\qquad
B A positional number system Hence，its base $=8$
B The maximum value of a single digit is 7 （one less
\qquad

B Each position of a digit represents a specific power of \qquad
\qquad
\qquad

Ref Page 22 Slide $14 / 40$ \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
$=1 \times 256+10 \times 16+15 \times 1$
$=256+160+15$ \qquad
\qquad

Ref Page 22 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Converting a Decinal Number to al Iuns'ger of Another Base \qquad

Division-Remainder Method

Step 1: Divide the decimal number to be converted by the value of the new base

Step 2: Record the remainder from Step 1 as the rightmost digit (least significant digit) of the new base number

Step 3: Divide the quotient of the previous divide by the new base
\qquad
\qquad
\qquad

Converting ar Decinal Number to a Number of Another Base
 Step 4: Record the remainder from Step 3 as the next digit (to the left) of the new base number

\qquad
\qquad

Repeat Steps 3 and 4, recording remainders from right to left, until the quotient becomes zero in Step 3

Note that the last remainder thus obtained will be the most significant digit (MSD) of the new base number
\qquad
Example
$952_{10}=? 8$
Solution:
$8 \mid 952$ Remainder
$119{ }^{\mathrm{s}} 0$

14	7
-1	6

Hence, $952_{10}=1670_{8}$
Slide 22/40
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad Converting a Number of Some base to an Nomber of Another B'ase \qquad
Example
$545_{6}=?_{4}$ \qquad

Solution:
Step 1: Convert from base 6 to base 10
$545_{6}=5 \times 6^{2}+4 \times 6^{1}+5 \times 6^{0}$
$=5 \times 36+4 \times 6+5 \times 1$
$=180+24+5$
$=209_{10}$

Converting a Number of Some Base io as Nussteer of AnOther Bjse
Step 2: Convert 209_{10} to base 4

4	209	Remainders
	52	1
	13	0
	3	1
	0	3

Hence, $209_{10}=3101_{4}$
So, $545_{6}=209_{10}=3101_{4}$
Thus, $545_{6}=3101_{4}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Ref Page 29 \qquad
Shorsut Method for Converting a Binary Nunseer to jes Egujvalenic Octal Junseer \qquad
Example
$1101010_{2}=?_{8}$
Step 1: Divide the binary digits into groups of 3 starting from right
$\underline{001} \underline{101} \quad \underline{010}$
Step 2: Convert each group into one octal digit \qquad
$001_{2}=0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=1$
$101_{2}=1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0}=5$ \qquad
$010_{2}=0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}=2$
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

 Number to lis Egnjvalent Birasy Junseer

Method

Step 1: Convert the decimal equivalent of each hexadecimal digit to a 4 digit binary number
Step 2: Combine all the resulting binary groups (of 4 digits each) in a single binary number

Coninued on next slide)
Ref Page 31
\square
Chapter 3: Number Systems
Slide 32/40
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Shoricut Method for Conyerting allexadecinal Number to lis Eghivaleni Einary Junsier

Example

$2 \mathrm{AB}_{16}=?_{2}$
Step 1: Convert each hexadecimal digit to a 4 digit binary number
$2_{16}=2_{10}=0010_{2}$
$\mathrm{A}_{16}=10_{10}=1010_{2}$
$\mathrm{B}_{16}=11_{10}=1011_{2}$ \qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
$a_{n} \times b^{n}+a_{n-1} \times b^{n-1}+\ldots+a_{0} \times b^{0}+a_{-1} \times b^{-1}+a_{-2} \times b^{-2}+$
\qquad should be one of the b symbols allowed in the number system

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Formation of fractional Numbers in Octal Nunder Systens (Esansple)	
Example	
$\begin{aligned} 127.54_{8} & =1 \times 8^{2}+2 \times 8^{1}+7 \times 8^{0}+5 \times 8^{-1}+4 \times 8^{-2} \\ & =64+16+7+5 / 8+4 / 64 \\ & =87+0.625+0.0625 \\ & =87.6875_{10} \end{aligned}$	
Ref Page 33 Chapter 3: Number Systems Slide 39/40	

Chapter 04
 Computer Codes

Computer Fundamentals - Pradeep K. Sinha \& Priti Sinha

Learning Objectives

In this chapter you will learn about:

B Computer data
B Computer codes: representation of data in binary
B Most commonly used computer codes
B Collating sequence

Data Types

B Numeric Data consists of only numbers $0,1,2, \ldots, 9$
B Alphabetic Data consists of only the letters A, B, C, ..., Z, in both uppercase and lowercase, and blank character
B Alphanumeric Data is a string of symbols where a symbol may be one of the letters A, B, C, ..., Z, in either uppercase or lowercase, or one of the digits 0 , $1,2, \ldots, 9$, or a special character, such as $+-* /$, () = etc.

Conputer Codes

B Computer codes are used for internal representation of data in computers
B As computers use binary numbers for internal data representation, computer codes use binary coding schemes
B In binary coding, every symbol that appears in the data is represented by a group of bits
B The group of bits used to represent a symbol is called a byte

Computer Codes

(Continued from previous slide..)
B As most modern coding schemes use 8 bits to represent a symbol, the term byte is often used to mean a group of 8 bits
B Commonly used computer codes are BCD, EBCDIC, and ASCII

BCD

B BCD stands for Binary Coded Decimal
B It is one of the early computer codes
B It uses 6 bits to represent a symbol
B It can represent $64\left(2^{6}\right)$ different characters

Codjng of Alphabetic ancl Junseric

Characters in E.CD

Char	BCD Code		Octal
	Zone	Digit	
A	11	0001	61
B	11	0010	62
C	11	0011	63
D	11	0100	64
E	11	0101	65
F	11	0110	66
G	11	0111	67
H	11	1000	70
I	11	1001	71
J	10	0001	41
K	10	0010	42
L	10	0011	43
M	10	0100	44

Char	BCD Code		Octal
	Zone	Digit	
N	10	0101	45
O	10	0110	46
P	10	0111	47
Q	10	1000	50
R	10	1001	51
S	01	0010	22
T	01	0011	23
U	01	0100	24
V	01	0101	25
W	01	0110	26
X	01	0111	27
Y	01	1000	30
Z	01	1001	31

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Coding of Alphadetic ans Junserje Characters in BCD

(Continued from previous slide..)

Character	BCD Code		Octal Equivalent
	Zone	Digit	
2	00	0001	02
3	00	0010	03
4	00	0011	04
5	00	0100	05
6	00	0101	06
7	00	0110	07
8	00	0111	10
9	00	1000	11
0	00	1001	12

BCD Coding Scheme (Exanfole L)

Example

Show the binary digits used to record the word BASE in BCD

Solution:

$B=110010$ in BCD binary notation
$A=110001$ in BCD binary notation
$\mathrm{S}=010010$ in BCD binary notation
$E=110101$ in $B C D$ binary notation
So the binary digits
$\frac{110010}{\mathrm{~B}} \frac{110001}{\mathrm{~A}} \frac{010010}{\mathrm{~S}} \frac{110101}{\mathrm{E}}$
will record the word BASE in BCD

BCD Coding Scheme (Example 2)

Example

Using octal notation, show BCD coding for the word DIGIT

Solution:

$D=64$ in BCD octal notation
I $=71$ in BCD octal notation
$\mathrm{G}=67$ in BCD octal notation
I $=71$ in BCD octal notation
$\mathrm{T}=23$ in BCD octal notation
Hence, BCD coding for the word DIGIT in octal notation will be

$$
\frac{64}{\mathrm{D}} \quad \frac{71}{\mathrm{I}} \quad \frac{67}{\mathrm{G}} \quad \frac{71}{\mathrm{I}} \quad \frac{23}{\mathrm{~T}}
$$

EBCDJC

B EBCDIC stands for Extended Binary Coded Decimal Interchange Code
B It uses 8 bits to represent a symbol
B It can represent $256\left(2^{8}\right)$ different characters

Computer Fundamentals: Pradeep K. Simha \& Priti Sinhan

Coding of Alphadetic ans Nunserje Characters in EECDJC

Char	EBCDIC Code		Hex
	Digit	Zone	
A	1100	0001	C1
B	1100	0010	C2
C	1100	0011	C3
D	1100	0100	C4
E	1100	0101	C5
F	1100	0110	C6
G	1100	0111	C7
H	1100	1000	C8
I	1100	1001	C9
J	1101	0001	D1
K	1101	0010	D2
L	1101	0011	D3
M	1101	0100	D4

Char	EBCDIC Code		Hex
	Digit	Zone	
N	1101	0101	D5
O	1101	0110	D6
P	1101	0111	D7
Q	1101	1000	D 8
R	1101	1001	D9
S	1110	0010	E2
T	1110	0011	E3
U	1110	0100	E4
V	1110	0101	E5
W	1110	0110	E6
X	1110	0111	E7
Y	1110	1000	E8
Z	1110	1001	E9

Codjng of Alphádetic ans Nunseric Characters if EBCDJC

(Continued from previous slide..)

Character	EBCDIC Code		Hexadecima
0	Digit	Zone	F0
1	1111	0000	F1
2	1111	0001	F2
3	1111	0010	F3
4	1111	0011	F4
5	1111	0100	F5
6	1111	0110	F6
7	1111	0111	F7
8	1111	1000	F8
9	1111	1001	F9

Zoned Decinam Nunters

B Zoned decimal numbers are used to represent numeric values (positive, negative, or unsigned) in EBCDIC
B A sign indicator (C for plus, D for minus, and F for unsigned) is used in the zone position of the rightmost digit
B Zones for all other digits remain as F, the zone value for numeric characters in EBCDIC
B In zoned format, there is only one digit per byte

Examples zoned Decinsal Junsbers

Numeric Value	EBCDI C	Sign Indicator
345	F3F4F5	F for unsigned
+345	F3F4C5	C for positive
-345	F3F4D5	D for negative

Packed Decinal Nushbers

B Packed decimal numbers are formed from zoned decimal numbers in the following manner:

Step 1: The zone half and the digit half of the rightmost byte are reversed

Step 2: All remaining zones are dropped out

B Packed decimal format requires fewer number of bytes than zoned decimal format for representing a number

B Numbers represented in packed decimal format can be used for arithmetic operations

Examples of Conversjonorizoned

Numeric Value	EBCDI C	Sign Indicator
345	F3F4F5	345 F
+345	F3F4C5	345 C
-345	F3F4D5	345 D
3456	F3F4F5F6	$03456 F$

EBCDJC Coding Scheme

Example

Using binary notation, write EBCDIC coding for the word BIT. How many bytes are required for this representation?

Solution:

$B=11000010$ in EBCDIC binary notation
I = 11001001 in EBCDIC binary notation
$\mathrm{T}=11100011$ in EBCDIC binary notation
Hence, EBCDIC coding for the word BIT in binary notation will be

3 bytes will be required for this representation because each letter requires 1 byte (or 8 bits)

ASCJ」

B ASCII stands for American Standard Code for I nformation I nterchange.

B ASCII is of two types - ASCII-7 and ASCII-8
B ASCII-7 uses 7 bits to represent a symbol and can represent 128 (2^{7}) different characters

B ASCII-8 uses 8 bits to represent a symbol and can represent 256 (2^{8}) different characters

B First 128 characters in ASCII-7 and ASCII-8 are same

Coding of Numseric and

Character	ASCII-7 / ASCII-8		Hexadecimal Equivalent
	Zone	Digit	
0	0011	0000	31
1	0011	0001	32
2	0011	0010	33
3	0011	0011	34
4	0011	0100	35
5	0011	0101	36
6	0011	0110	37
7	0011	0111	38
8	0011	1000	39
9	0011	1001	

(Continued on next slide)

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Coding of Numseric and

(Continued from previous slide..)

Character	ASCII-7 / ASCII-8		Hexadecimal Equivalent
	Zone	Digit	
A	0100	0001	42
B	0100	0010	43
C	0100	0011	44
D	0100	0100	45
E	0100	0101	46
F	0100	0110	47
G	0100	0111	48
H	0100	1000	49
J	0100	1001	$4 A$
K	0100	1010	$4 B$
M	0100	1011	$4 C$
	0100	1100	$4 D$

Computer Fundamentals: Pradeep K. Simha \& Priti Sinhan

Coding of Nunseric and

(Continued from previous slide..)

Character	ASCII-7 / ASCII-8		Hexadecimal Equivalent
	Zone	Digit	
N	0100	1110	4 F
O	0100	1111	50
P	0101	0000	51
Q	0101	0001	52
R	0101	0010	53
S	0101	0011	54
T	0101	0100	55
U	0101	0101	56
V	0101	0110	57
W	0101	0111	58
X	0101	1000	59
Y	0101	1001	5 A
Z	0101	1010	

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

ASCJI-7 Coding Schense

Example

Write binary coding for the word BOY in ASCII-7. How many bytes are required for this representation?

Solution:

$B=1000010$ in ASCII-7 binary notation
$\mathrm{O}=1001111$ in ASCII-7 binary notation
$\mathrm{Y}=1011001$ in ASCII-7 binary notation

Hence, binary coding for the word BOY in ASCII-7 will be

$$
\begin{array}{ccc}
1000010 & \frac{1001111}{\mathrm{~B}} & \frac{1011001}{\mathrm{Y}}
\end{array}
$$

Since each character in ASCII-7 requires one byte for its representation and there are 3 characters in the word BOY, 3 bytes will be required for this representation

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

ASCJI-8 Coding Schense

Example

Write binary coding for the word SKY in ASCII-8. How many bytes are required for this representation?

Solution:

$\mathrm{S}=01010011$ in ASCII-8 binary notation
$\mathrm{K}=01001011$ in ASCII-8 binary notation
$\mathrm{Y}=01011001$ in ASCII-8 binary notation
Hence, binary coding for the word SKY in ASCII-8 will be

$$
\frac{01010011}{S} \frac{01001011}{\mathrm{~K}} \quad \frac{01011001}{\mathrm{Y}}
$$

Since each character in ASCII-8 requires one byte for its representation and there are 3 characters in the word SKY, 3 bytes will be required for this representation

Unicode

B Why Unicode:
B No single encoding system supports all languages
B Different encoding systems conflict
B Unicode features:
B Provides a consistent way of encoding multilingual plain text
B Defines codes for characters used in all major languages of the world
B Defines codes for special characters, mathematical symbols, technical symbols, and diacritics

Unicode

B Unicode features (continued):
B Capacity to encode as many as a million characters
B Assigns each character a unique numeric value and name
B Reserves a part of the code space for private use
B Affords simplicity and consistency of ASCII, even corresponding characters have same code
B Specifies an algorithm for the presentation of text with bi-directional behavior

B Encoding Forms

B UTF-8, UTF-16, UTF-32

Collating sequence

ß Collating sequence defines the assigned ordering among the characters used by a computer

B Collating sequence may vary, depending on the type of computer code used by a particular computer
ß In most computers, collating sequences follow the following rules:

1. Letters are considered in alphabetic order $(A<B<C \ldots<Z)$
2. Digits are considered in numeric order ($0<1<2 \ldots<9$)

Sorting is EBCDJC

Example

Suppose a computer uses EBCDIC as its internal representation of characters. In which order will this computer sort the strings $23, \mathrm{~A} 1,1 \mathrm{~A}$?

Solution:

In EBCDIC, numeric characters are treated to be greater than alphabetic characters. Hence, in the said computer, numeric characters will be placed after alphabetic characters and the given string will be treated as:

A1 <1 A <23
Therefore, the sorted sequence will be: A1, 1A, 23.

Soring in ASCIJ

Example

Suppose a computer uses ASCII for its internal representation of characters. In which order will this computer sort the strings $23, \mathrm{~A} 1$, 1A, a2, 2a, aA, and Aa?

Solution:

In ASCII, numeric characters are treated to be less than alphabetic characters. Hence, in the said computer, numeric characters will be placed before alphabetic characters and the given string will be treated as:
$1 \mathrm{~A}<23<2 \mathrm{a}<\mathrm{A} 1<\mathrm{Aa}<\mathrm{a} 2<\mathrm{aA}$
Therefore, the sorted sequence will be: 1A, 23, 2a, A1, Aa, a2, and aA

Key MordS/ Rhicses

```
B Alphabetic data
B Alphanumeric data
B American Standard Code for Information Interchange (ASCII)
B Binary Coded Decimal (BCD) code
B Byte
B Collating sequence
B Computer codes
B Control characters
B Extended Binary-Coded Decimal Interchange Code (EBCDIC)
B Hexadecimal equivalent
B Numeric data
B Octal equivalent
B Packed decimal numbers
B Unicode
B Zoned decimal numbers
```


Computer Fundamentals! Pradeep K. Sinha \& priti Sinha
Leaning Objectives

In this chapter you will learn about:

B Computer data
B Computer codes: representation of data in binary
B Most commonly used computer codes
B Collating sequence
Ref. Page $36 \quad$ Chapter 4: Computer Codes \quad Slide 2/30

Data Jypes

B Numeric Data consists of only numbers $0,1,2, \ldots, 9$
B Alphabetic Data consists of only the letters A, B, C, ..., Z, in both uppercase and lowercase, and blank character
B Alphanumeric Data is a string of symbols where a symbol may be one of the letters A, B, C, ..., Z, in either uppercase or lowercase, or one of the digits 0 , 1, 2, .., 9, or a special character, such as + - * / , . () = etc.

Computer Codes

B Computer codes are used for internal representation of data in computers
ß As computers use binary numbers for internal data representation, computer codes use binary coding schemes
B In binary coding, every symbol that appears in the data is represented by a group of bits

B The group of bits used to represent a symbol is called a byte

Conputer Codes

(Continued from previous slide..)
B As most modern coding schemes use 8 bits to represent a symbol, the term byte is often used to mean a group of 8 bits

B Commonly used computer codes are BCD, EBCDIC, and ASCII

Coding of Alphabetic and Numeric Characters in BCD

Char	BCD Code		Octal
	Zone	Digit	
A	11	0001	61
B	11	0010	62
C	11	0011	63
D	11	0100	64
E	11	0101	65
F	11	0110	66
G	11	0111	67
H	11	1000	70
I	11	1001	71
J	10	0001	41
K	10	0010	42
L	10	0011	43
M	10	0100	44

Char	BCD Code		Octal
	Zone	Digit	
N	10	0101	45
O	10	0110	46
P	10	0111	47
Q	10	1000	50
R	10	1001	51
S	01	0010	22
T	01	0011	23
U	01	0100	24
V	01	0101	25
W	01	0110	26
X	01	0111	27
Y	01	1000	30
Z	01	1001	31

(Continued on next slide)

BCD Coding Scheme (Example 1)

Example

Show the binary digits used to record the word BASE in BCD

Solution:

$B=110010$ in BCD binary notation
$A=110001$ in BCD binary notation
$S=010010$ in BCD binary notation
$E=110101$ in $B C D$ binary notation
So the binary digits
$\frac{110010}{B} \frac{110001}{A} \frac{010010}{S} \frac{110101}{E}$
will record the word BASE in BCD

Compuier Fundamentals: Pradeep K. Sinina \&ipriti Sinhar
BCD Coding Scheme (Example 2)

Example

Using octal notation, show BCD coding for the word DIGIT

Solution:

$D=64$ in BCD octal notation
I $=71$ in BCD octal notation
$\mathrm{G}=67$ in BCD octal notation
l $=71$ in BCD octal notation
$\mathrm{T}=23$ in BCD octal notation

Hence, BCD coding for the word DIGIT in octal notation will be

$\frac{64}{D}$	$\frac{71}{I}$	$\frac{67}{G}$	$\frac{71}{I}$	$\frac{23}{T}$

EBCDJC

B EBCDIC stands for Extended Binary Coded Decimal Interchange Code

B It uses 8 bits to represent a symbol
B It can represent $256\left(2^{8}\right)$ different characters

Computer Fundamentals! Pradeep K. Sinna \& Priti Sinha
Coding of Alphabejic and Nusseric
Characters is EECDJC

Char	EBCDI Code		Hex
	Digit	Zone	
A	1100	0001	C1
B	1100	0010	C2
C	1100	0011	C3
D	1100	0100	C4
E	1100	0101	C5
F	1100	0110	C6
G	1100	0111	C7
H	1100	1000	C8
I	1100	1001	C9
J	1101	0001	D1
K	1101	0010	D2
L	1101	0011	D3
M	1101	0100	D4

Char	EBCDIC Code		Hex
	Digit	Zone	
N	1101	0101	D5
O	1101	0110	D6
P	1101	0111	D7
Q	1101	1000	$D 8$
R	1101	1001	$D 9$
S	1110	0010	$E 2$
T	1110	0011	$E 3$
U	1110	0100	$E 4$
V	1110	0101	$E 5$
W	1110	0110	$E 6$
X	1110	0111	$E 7$
Y	1110	1000	$E 8$
Z	1110	1001	$E 9$

(Continued on next slide)

Zoned Decinal Nunbers

B Zoned decimal numbers are used to represent numeric values (positive, negative, or unsigned) in EBCDIC
B A sign indicator (C for plus, D for minus, and F for unsigned) is used in the zone position of the rightmost digit
B Zones for all other digits remain as F, the zone value for numeric characters in EBCDIC
B In zoned format, there is only one digit per byte

Examples Zoned Decimal Nunters

Numeric Value	EBCDIC	Sign Indicator
345	F3F4F5	F for unsigned
+345	F3F4C5	C for positive
-345	F3F4D5	D for negative

Packed Decinaj Nunders

B Packed decimal numbers are formed from zoned decimal numbers in the following manner:

Step 1: The zone half and the digit half of the rightmost byte are reversed

Step 2: All remaining zones are dropped out

B Packed decimal format requires fewer number of bytes than zoned decimal format for representing a number

B Numbers represented in packed decimal format can be used for arithmetic operations

Examples of Conversion of Zoned

Decimal Numbers to Packed Decimal Format

Numeric Value	EBCDI C	Sign Indicator
345	F3F4F5	345 F
+345	F3F4C5	345 C
-345	F3F4D5	345 D
3456	F3F4F5F6	03456 F

EBCDJC Coding Scheme

Example

Using binary notation, write EBCDIC coding for the word BIT. How many bytes are required for this representation?

Solution:

$B=11000010$ in EBCDIC binary notation
I = 11001001 in EBCDIC binary notation
$\mathrm{T}=11100011$ in EBCDIC binary notation
Hence, EBCDIC coding for the word BIT in binary notation will be
$\begin{array}{ccc}11000010 & \frac{11001001}{\mathrm{~B}} & \frac{11100011}{\mathrm{~T}}\end{array}$
3 bytes will be required for this representation because each letter requires 1 byte (or 8 bits)

ASCJ]

\& ASCII stands for American Standard Code for I nformation I nterchange.
$ß$ ASCII is of two types - ASCII-7 and ASCII-8
B ASCII-7 uses 7 bits to represent a symbol and can represent $128\left(2^{7}\right)$ different characters

B ASCII-8 uses 8 bits to represent a symbol and can represent $256\left(2^{8}\right)$ different characters
ß First 128 characters in ASCII-7 and ASCII-8 are same

Coding of Numeric and Alphabetic Cinaracters in ASCJJ

Character	ASCII-7 / ASCII-8		Hexadecimal Equivalent
	Zone	Digit	
0	0011	0000	31
1	0011	0001	32
2	0011	0010	33
3	0011	0011	34
4	0011	0100	35
5	0011	0101	36
6	0011	0110	37
7	0011	0111	38
8	0011	1000	39
9	0011	1001	

Coding of Numeric and Alphabetic Cinaracters in ASC』」
(Continued from previous slide.)

Character	ASCII-7 / ASCII-8		Hexadecimal Equivalent
	Zone	Digit	
A	0100	0001	42
B	0100	0010	43
C	0100	0011	44
D	0100	0100	45
F	0100	0101	46
H	0100	0110	47
J	0100	0111	48
K	0100	1000	49
M	0100	1001	4 A
	0100	1010	$4 B$

Computer Fundamentals: Pradeep K. Simha \& Priti Sinha
Coding of Numeric and
Alphabetis Cinaracters in ASCJJ
(Continued from previous slide..)

Character	ASCII-7 / ASCII-8	Hexadecimal Equivalent	
	Zone		4 E
N	0100	1110	4 F
O	0100	1111	50
P	0101	0000	51
Q	0101	0001	52
R	0101	0010	53
S	0101	0011	54
T	0101	0100	55
U	0101	0101	56
V	0101	0110	57
W	0101	0111	58
X	0101	1000	59
Y	0101	1001	5 A
Z	0101	1010	

ASCJ.-7 Coding Schense

Example

Write binary coding for the word BOY in ASCII-7. How many bytes are required for this representation?

Solution:

$\mathrm{B}=1000010$ in ASCII-7 binary notation
$\mathrm{O}=1001111$ in ASCII-7 binary notation
$\mathrm{Y}=1011001$ in ASCII-7 binary notation

Hence, binary coding for the word BOY in ASCII-7 will be

$$
\frac{1000010}{\mathrm{~B}} \quad \frac{1001111}{\mathrm{O}} \frac{1011001}{\mathrm{Y}}
$$

Since each character in ASCII-7 requires one byte for its representation and there are 3 characters in the word BOY, 3 bytes will be required for this representation

ASCJI-E Coding Schense

Example

Write binary coding for the word SKY in ASCII-8. How many bytes are required for this representation?

Solution:

$\mathrm{S}=01010011$ in ASCII-8 binary notation
$\mathrm{K}=01001011$ in ASCII-8 binary notation
$\mathrm{Y}=01011001$ in ASCII-8 binary notation

Hence, binary coding for the word SKY in ASCII-8 will be

$$
\begin{array}{ccc}
\frac{01010011}{S} & \frac{01001011}{K} & \frac{01011001}{Y}
\end{array}
$$

Since each character in ASCII-8 requires one byte for its representation and there are 3 characters in the word SKY, 3 bytes will be required for this representation

Collating sequence

B Collating sequence defines the assigned ordering among the characters used by a computer

B Collating sequence may vary, depending on the type of computer code used by a particular computer

B In most computers, collating sequences follow the following rules:

1. Letters are considered in alphabetic order ($A<B<C \ldots<Z$)
2. Digits are considered in numeric order ($0<1<2 \ldots<9$)

Compuier Fundamentals: Pradeep K. Sinha \&i Prifi Sinha:

Sorting is EBCDJC

Example

Suppose a computer uses EBCDIC as its internal representation of characters. In which order will this computer sort the strings $23, \mathrm{~A} 1,1 \mathrm{~A}$?

Solution:

In EBCDIC, numeric characters are treated to be greater than alphabetic characters. Hence, in the said computer, numeric characters will be placed after alphabetic characters and the given string will be treated as:

A1 <1 A <23
Therefore, the sorted sequence will be: A1, 1A, 23.

Soring is ASCJ.

Example

Suppose a computer uses ASCII for its internal representation of characters. In which order will this computer sort the strings 23, A1, $1 \mathrm{~A}, \mathrm{a} 2,2 \mathrm{a}, \mathrm{aA}$, and Aa ?

Solution:

In ASCII, numeric characters are treated to be less than alphabetic characters. Hence, in the said computer, numeric characters will be placed before alphabetic characters and the given string will be treated as:
$1 \mathrm{~A}<23<2 \mathrm{a}<\mathrm{A} 1<\mathrm{Aa}<\mathrm{a} 2<\mathrm{aA}$
Therefore, the sorted sequence will be: $1 \mathrm{~A}, 23,2 \mathrm{a}, \mathrm{A} 1, \mathrm{Aa}, \mathrm{a} 2$, and aA

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
B Computer data

B Most commonly used computer codes
B Collating sequence

\qquad
COSSOUJES COCSS
(Continued from previous side..)
B As most modern coding schemes use 8 bits to represent
a symbol, the term byte is often used to mean a group
of 8 bits
B Commonly used computer codes are BCD, EBCDIC, and
ASCII
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| B. CD |
| :--- | :--- |
| B BCD stands for Binary Coded Decimal |
| B It is one of the early computer codes |
| B It uses 6 bits to represent a symbol |
| B It can represent $64\left(2^{6}\right)$ different characters |
| Ref. Page 36 |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Characters is ECD

Character	BCD Code		Octal Equivalent
	Zone	Digit	
1	00	0001	02
2	00	0010	03
3	00	0011	04
4	00	0100	04
5	00	0101	05
6	00	0110	06
7	00	0111	07
8	00	1000	10
9	00	1001	11
0	00	1010	12

Ref. Page 37 Chapter 4: Computer Codes
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

[^0]\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EBCDJC	
B EBCDIC stands for Extended Binary Coded Decimal Interchange Code B It uses 8 bits to represent a symbol B It can represent $256\left(2^{8}\right)$ different characters	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Coding of Alphabetic and Nunseris
Characters is EECDJC

Character	EBCDIC Code		Hexadecima
	Digit	Zone	I Equivalent
0	1111	0000	F0
1	1111	0001	F1
2	1111	0010	F2
3	1111	0011	F3
4	1111	0100	F4
5	1111	0101	F5
6	1111	0110	F6
7	1111	0111	F7
8	1111	1000	F8
9	1111	1001	F9

Ref. Page 39
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Zoned Decinaal Nunders

B Zoned decimal numbers are used to represent numeric values (positive, negative, or unsigned) in EBCDIC
B A sign indicator (C for plus, D for minus, and F for unsigned) is used in the zone position of the rightmost digit
B Zones for all other digits remain as F, the zone value for numeric characters in EBCDIC
B In zoned format, there is only one digit per byte

Examples Zoned Decinaj Numbers			
	Numeric Value	EBCDIC	Sign Indicator
	345	F3F4F5	F for unsigned
	+345	F3F4C5	C for positive
	-345	F3F4D5	D for negative

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EBCDJC Codjng Sichense

Example

Using binary notation, write EBCDIC coding for the word BIT. How \qquad many bytes are required for this representation?

Solution

B $=11000010$ in EBCDIC binary notation
$\begin{aligned} & =11001001 \text { in EBCDIC binary notation }\end{aligned}$
$T=11100011$ in EBCDIC binary notation
Hence, EBCDIC coding for the word BIT in binary notation will be
\qquad
$\frac{11000010}{\mathrm{~B}} \quad \frac{11001001}{\mathrm{I}} \frac{11100011}{\mathrm{~T}}$ \qquad
3 bytes will be required for this representation because each letter requires 1 byte (or 8 bits) \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Coding of Numeric ands
Alphabetic Characters in ASCI」

Character	ASCII-7 / ASCII-8		Hexadecimal Equivalent
	0011	Digit	3000
1	0011	0001	31
2	0011	0010	32
3	0011	0011	33
4	0011	0100	34
5	0011	0101	35
6	0011	0110	36
7	0011	0111	37
8	0011	1000	38
9	0011	1001	39

\qquad
\qquad
\qquad
\qquad
(Continued on next slide) \qquad

| Ref. Page 42 | | (Continued on next slide) |
| :--- | :--- | :--- | :--- |

\qquad

Coding of Numeric and Alphabetic Characters in ASCl. \qquad

Character	ASCII-7/ASCII-8		Hexadecimal Equivalent
	Zone	Digit	
A	0100	0001	42
B	0100	0010	43
C	0100	0011	44
D	0100	0100	45
E	0100	0101	46
F	0100	0110	47
G	0100	0111	48
H	0100	1000	49
I	0100	1001	4 A
J	0100	1010	$4 B$
K	0100	1011	$4 C$
L	0100	1100	$4 D$
M	0100	1101	

\qquad
\qquad
\qquad
\qquad
\qquad
Coding of Numeric and Alphaberic Charasters in ASC」

Character	ASCII-7/ASCII-8		Hexadecimal Equivalent
	Zone	Digit	4 E
N	0100	1110	4 F
O	0100	1111	50
P	0101	0000	51
Q	0101	0001	52
R	0101	0010	53
S	0101	0011	54
T	0101	0100	55
U	0101	0101	56
V	0101	0110	57
W	0101	0111	58
X	0101	1000	59
Y	0101	1001	5 A
Z	0101	1010	

Ref. Page 42
Slide 22/30
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
Since each character in ASCII-7 requires one byte for its representation and here are 3 characters in the word BOY, 3 bytes will be required for this
representation Slide 23/30

\section*{ASCJJ-8 Coding Schense
 Example
 Write binary coding for the word SKY in ASCII-8. How many bytes are equired for this representation?
 $\mathrm{S}=01010011$ in ASCII- 8 binary notation
 $\mathrm{K}=01001011$ in ASCII-8 binary notation
 $\mathrm{Y}=01011001$ in ASCII - 8 binary notation
 Hence, binary coding for the word SKY in ASCII-8 will be
 $\frac{01010011}{\mathrm{~S}} \frac{01001011}{\mathrm{~K}} \frac{01011001}{\mathrm{Y}}$
 Since each character in ASCII-8 requires one byte for its representation and there are 3 characters in the word SKY, 3 bytes will be required for this representation
 ```

Ref. Page 43
\qquad
\qquad
\qquad

\qquad

\qquad inued):

Capacity to \qquad name
Reserves a part of the code space for private use
Affords simplicity and consistency of ASCII, even
\qquad
Specifies an algorithm for the presentation of text with bi-directional behavior \qquad
Encoding Forms
B UTF-8, UTF-16, UTF-32 \qquad
\qquad
\qquad

Sorting is EBCDJC

Example

Suppose a computer uses EBCDIC as its internal
representation of characters. In which order will this representation of characters. In which order will this computer sort the strings $23, \mathrm{~A} 1,1 \mathrm{~A}$?

Solution:

In EBCDIC, numeric characters are treated to be greater
than alphabetic characters. Hence, in the said computer,
than alphabetic characters. Hence, in the said computer,
numeric characters will be placed after alphabetic
numeric characters will be placed after al
A1 <1 A <23
Therefore, the sorted sequence will be: A1, 1A, 23.

Ref. Page 46
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
Therefore, the sorted sequence will be: $1 \mathrm{~A}, 23,2 \mathrm{a}, \mathrm{A} 1, \mathrm{Aa}, \mathrm{a} 2$, and aA

Chapter 05
 Computer Arithmetic

Computer Fundamentals - Pradeep K. Sinha \& Priti Sinha

Learsjug Objectives

In this chapter you will learn about:

B Reasons for using binary instead of decimal numbers
B Basic arithmetic operations using binary numbers
B Addition (+)
B Subtraction (-)
ß Multiplication (*)
ß Division (/)

Binary over Decinsal

B Information is handled in a computer by electronic/ electrical components
B Electronic components operate in binary mode (can only indicate two states - on (1) or off (0)
B Binary number system has only two digits (0 and 1), and is suitable for expressing two possible states
A In binary system, computer circuits only have to handle two binary digits rather than ten decimal digits causing:
B Simpler internal circuit design
B Less expensive
B More reliable circuits
B Arithmetic rules/processes possible with binary numbers

Exanfples of arew Devices thar work is Bjnasy ウloc」

Binary State	On (1)	Off (0)
Bulb	$-$	\mathbb{Q}
Switch	-	-10
Circuit Pulse	\digamma	

Binary Artinnetic

B Binary arithmetic is simple to learn as binary number system has only two digits - 0 and 1

B Following slides show rules and example for the four basic arithmetic operations using binary numbers

Binary Addficos

Rule for binary addition is as follows:

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=0 \text { plus a carry of } 1 \text { to next higher column }
\end{aligned}
$$

Binary Addfion-(Exansple L)

Example

Add binary numbers 10011 and 1001 in both decimal and binary form

Solution

Binary Decimal

carry 11	carry	1
10011	19	
+1001		+9
11100		28

In this example, carry are generated for first and second columns

Einary Addition-(Exansple 2)

Example

Add binary numbers 100111 and 11011 in both decimal and binary form

Solution

| | Binary |
| :---: | ---: |\quad Decimal

The addition of three $1 s$ can be broken up into two steps. First, we add only two 1 s giving $10(1+1=$ 10). The third 1 is now added to this result to obtain 11 (a 1 sum with a 1 carry). Hence, $1+1+1$ = 1, plus a carry of 1 to next higher column.

Binary subtraction

Rule for binary subtraction is as follows:

$$
\begin{aligned}
& 0-0=0 \\
& 0-1=1 \text { with a borrow from the next column } \\
& 1-0=1 \\
& 1-1=0
\end{aligned}
$$

Binary subtraction (Exanfole)

Example

Subtract 01110_{2} from 10101_{2}
Solution
$\left\{\begin{array}{l}12 \\ 0202 \\ 10101 \\ -01110 \\ \hline 00111\end{array}\right.$

Note: Go through explanation given in the book

Conplenentofa munder

Number of digits
in the number

Complement of the number

$=\quad$| Number of digits |
| :---: |
| in the number |

Complemsent of a Number (Example 1)

Example

Find the complement of 37_{10}

Solution

Since the number has 2 digits and the value of base is 10 ,
$(\text { Base })^{n}-1=10^{2}-1=99$
Now 99-37 = 62
Hence, complement of $37_{10}=62_{10}$

Complement of a Number (Example 2)

Example

Find the complement of 6_{8}

Solution

Since the number has 1 digit and the value of base is 8 ,

$$
\begin{aligned}
& (\text { Base })^{n}-1=8^{1}-1=7_{10}=7_{8} \\
& \text { Now } 7_{8}-6_{8}=1_{8}
\end{aligned}
$$

Hence, complement of $6_{8}=1_{8}$

Complensenter a Busary Nussber

Complement of a binary number can be obtained by transforming all its 0's to 1's and all its 1's to 0's

Example

Complement of

Note: Verify by conventional complement

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Conplensentany juchod of stheraction

I nvolves following 3 steps:

Step 1: Find the complement of the number you are subtracting (subtrahend)

Step 2: Add this to the number from which you are taking away (minuend)

Step 3: If there is a carry of 1 , add it to obtain the result; if there is no carry, recomplement the sum and attach a negative sign

Complementary subtraction is an additive approach of subtraction

Complensentary subtracton (Exancole 1)

Example:

Subtract 56_{10} from 92_{10} using complementary method.

Solution

Step 1: Complement of 56_{10}

$$
=10^{2}-1-56=99-56=43_{10}
$$

Step 2: $92+43$ (complement of 56)
$=135$ (note 1 as carry)
The result may be verified using the method of normal subtraction:

Step 3: $35+1$ (add 1 carry to sum)
$92-56=36$
Result $=36$

Complementary subtraction (Example 2)

Example

Subtract 35_{10} from 18_{10} using complementary method.

Solution

Step 1: Complement of 35_{10}
$=10^{2}-1-35$
$=99-35$
$=64_{10}$
Step 2: 18

+ 64 (complement
- of 35)

82

Step 3: Since there is no carry, re-complement the sum and attach a negative sign to obtain the result.

$$
\begin{aligned}
\text { Result } & =-(99-82) \\
& =-17
\end{aligned}
$$

The result may be verified using normal subtraction:

$$
18-35=-17
$$

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Binary Subtraction Using Complementary blethod (Example 1)

Example

Subtract $0111000_{2}\left(56_{10}\right)$ from $1011100_{2}\left(92_{10}\right)$ using complementary method.

Solution

```
1011100
+1000111 (complement of 0111000)
10100011
\ (add the carry of 1)
0 1 0 0 1 0 0
    Result = 0100100 2 = 36 10
```

Compuier Fundamentals: Pradeep K. Stinha \& Priti Sinha

Binary Subtraction Using Complensentary juernod (Example 2)

Example

Subtract $100011_{2}\left(35_{10}\right)$ from $010010_{2}\left(18_{10}\right)$ using complementary method.

Solution

```
    010010
+011100 (complement of 100011)
    1 0 1 1 1 0
```

Since there is no carry, we have to complement the sum and attach a negative sign to it. Hence,

$$
\begin{aligned}
\text { Result } & =-010001_{2}\left(\text { complement of } 101110_{2}\right) \\
& =-17_{10}
\end{aligned}
$$

Binary Multiplicatos

Table for binary multiplication is as follows:

$$
\begin{aligned}
& 0 \times 0=0 \\
& 0 \times 1=0 \\
& 1 \times 0=0 \\
& 1 \times 1=1
\end{aligned}
$$

Bjnary Mondiplication (Exassple 1)

Example

Multiply the binary numbers 1010 and 1001

Solution

1010	Multiplicand
$\times 1001$	Multiplier
1010	Partial Product
0000	Partial Product
0000	Partial Product
1010	Partial Product

1011010 Final Product

Binary Mondiplicaion (Exasfole 2)

(Continued from previous slide..)
Whenever a 0 appears in the multiplier, a separate partial product consisting of a string of zeros need not be generated (only a shift will do). Hence,

```
        1010
        x1001
        1010
        1010SS (S = left shift)
1011010
```


Binary Divisjon

Table for binary division is as follows:
$0 \div 0=$ Divide by zero error
$0 \div 1=0$
$1 \div 0=$ Divide by zero error
$1 \div 1=1$
As in the decimal number system (or in any other number system), division by zero is meaningless

The computer deals with this problem by raising an error condition called 'Divide by zero' error

Rules for Bjnary Division

1. Start from the left of the dividend
2. Perform a series of subtractions in which the divisor is subtracted from the dividend
3. If subtraction is possible, put a 1 in the quotient and subtract the divisor from the corresponding digits of dividend
4. If subtraction is not possible (divisor greater than remainder), record a 0 in the quotient
5. Bring down the next digit to add to the remainder digits. Proceed as before in a manner similar to long division

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Binary Division (Exancole it

Example

Divide 100001_{2} by 110_{2}
Solution 0101 (Quotient)

Addjujve juethod of jultiplicarion Encl Divisjos

Most computers use the additive method for performing multiplication and division operations because it simplifies the internal circuit design of computer systems

Example

$$
4 \times 8=8+8+8+8=32
$$

Rules for Adolitive duethod of Division

B Subtract the divisor repeatedly from the dividend until the result of subtraction becomes less than or equal to zero

B If result of subtraction is zero, then:
B quotient = total number of times subtraction was performed

B remainder $=0$
B If result of subtraction is less than zero, then:
B quotient = total number of times subtraction was performed minus 1

B remainder $=$ result of the subtraction previous to the last subtraction

Addjejve vathool or Djvisjon (Exancole)

Example

Divide 33_{10} by 6_{10} using the method of addition

Solution:

$$
\begin{array}{rlr}
33-6=27 & & \\
27-6=21 & & \text { Since the result of the last } \\
21-6=15 & & \text { subtraction is less than zero, } \\
15-6=9 & & \text { Quotient }=6-1 \text { (ignore last } \\
9-6 & =3 & \\
3-6 & =-3 & \\
\text { subtraction) }=5
\end{array}
$$

Total subtractions $=6$ Remainder $=3$ (result of previous subtraction)

Key Wordsk Phirases

B Additive method of division
B Additive method of multiplication
B Additive method of subtraction
B Binary addition
B Binary arithmetic
B Binary division
B Binary multiplication
B Binary subtraction
B Complement
B Complementary subtraction
B Computer arithmetic

Chapter 05

Computer Arithmetic

Computer Fundomentals - Pradeep K. Sinho \& Pirili Sinha

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinhan
Leaning Objectives

In this chapter you will learn about:

B Reasons for using binary instead of decimal numbers
B Basic arithmetic operations using binary numbers
B Addition (+)
ß Subtraction (-)
ß Multiplication (*)
ß Division (/)

Binary over Decinajl

B Information is handled in a computer by electronic/ electrical components
B Electronic components operate in binary mode (can only indicate two states - on (1) or off (0)
B Binary number system has only two digits (0 and 1), and is suitable for expressing two possible states
B In binary system, computer circuits only have to handle two binary digits rather than ten decimal digits causing:

B Simpler internal circuit design
B Less expensive
B More reliable circuits
B Arithmetic rules/processes possible with binary numbers

Binary Arfthmetic

B Binary arithmetic is simple to learn as binary number system has only two digits - 0 and 1

B Following slides show rules and example for the four basic arithmetic operations using binary numbers

Computer Fundamentals! Pradeep K. Sinna \&p Priti sinhar
Binary Adelfion

Rule for binary addition is as follows:
$0+0=0$
$0+1=1$
$1+0=1$
$1+1=0$ plus a carry of 1 to next higher column

Binary Addficon (Exansple L)

Example

Add binary numbers 10011 and 1001 in both decimal and binary form

Solution

Binary

carry 11
10011
+1001

11100

Decimal

carry 1
19
$+9$
28

In this example, carry are generated for first and second columns

Binary Addition (Example 2)

Example

Add binary numbers 100111 and 11011 in both decimal and binary form

Solution

Binary subtractos

Rule for binary subtraction is as follows:
$0-0=0$
0-1 = 1 with a borrow from the next column
$1-0=1$
$1-1=0$

Binary suburaction (Example)

Example

Subtract OllO_{2} from $\mathrm{10101}_{2}$

Solution

$$
\begin{array}{r}
\left\{\begin{array}{l}
12 \\
0202 \\
10101
\end{array}\right. \\
-01110 \\
\hline 00111
\end{array}
$$

Note: Go through explanation given in the book

Conplementofa jumster

Example

Find the complement of 37_{10}

Solution

Since the number has 2 digits and the value of base is 10 ,
$(\text { Base })^{\mathrm{n}}-1=10^{2}-1=99$
Now 99-37 = 62
Hence, complement of $37_{10}=62_{10}$

Example

Find the complement of 68

Solution

Since the number has 1 digit and the value of base is 8 ,
$(\text { Base })^{n}-1=8^{1}-1=7_{10}=7_{8}$ Now $7_{8}-6_{8}=1_{8}$

Hence, complement of $6_{8}=1_{8}$

Complement of a binary number can be obtained by transforming all its 0's to 1's and all its 1's to 0's

Example
Complement of

Note: Verify by conventional complement

Conplementany yetinod of subtraction

I nvolves following $\mathbf{3}$ steps:
Step 1: Find the complement of the number you are subtracting (subtrahend)

Step 2: Add this to the number from which you are taking away (minuend)

Step 3: If there is a carry of 1 , add it to obtain the result; if there is no carry, recomplement the sum and attach a negative sign

Complementary subtraction is an additive approach of subtraction

Conplensentary subtraction (zxancple 1)

Example:

Subtract 56_{10} from 92_{10} using complementary method.

Solution

Step 1: Complement of 56_{10}

$$
=10^{2}-1-56=99-56=43_{10}
$$

Step 2: $92+43$ (complement of 56)

$$
=135 \text { (note } 1 \text { as carry) }
$$

Step 3: $35+1$ (add 1 carry to sum)
The result may be verified using the method of normal subtraction:

Result $=36$
$92-56=36$

Computer Fundamentals. Pradeep K. Sinha \& Priti Sinhan

Complementary subtraction (Example 2)

Example

Subtract 35_{10} from 18_{10} using complementary method.

Solution

Step 1: Complement of 35_{10}

$$
=10^{2}-1-35
$$

$$
=99-35
$$

$$
=64_{10}
$$

Step 2: 18 + 64 (complement of 35) 82

Step 3: Since there is no carry re-complement the sum and attach a negative sign to obtain the result.

Result $=-(99-82)$
$=-17$
The result may be verified using normal subtraction:

$$
18-35=-17
$$

Binary Subtraction Using Complementary Method

 (Example 1)
Example

Subtract $0111000_{2}\left(56_{10}\right)$ from $1011100_{2}\left(92_{10}\right)$ using complementary method.

Solution

1011100
+1000111 (complement of 0111000)
10100011
 $\rightarrow 1$ (add the carry of 1)

0100100
Result $=0100100_{2}=36_{10}$

Binary Subtraction Using Complensentary Detinod

($\mathrm{Exan} \rho \mathrm{s}$) 2)

Example

Subtract $100011_{2}\left(35_{10}\right)$ from $010010_{2}\left(18_{10}\right)$ using complementary method.

Solution

```
0 1 0 0 1 0
+011100 (complement of 100011)
```

 101110
 Since there is no carry, we have to complement the sum and attach a negative sign to it. Hence,

$$
\begin{aligned}
\text { Result } & =-010001_{2}\left(\text { complement of } 101110_{2}\right) \\
& =-17_{10}
\end{aligned}
$$

Binary Multiplication

Table for binary multiplication is as follows:
$0 \times 0=0$
$0 \times 1=0$
$1 \times 0=0$
$1 \times 1=1$

Binary かultuplication (Exancole t)

Example

Multiply the binary numbers 1010 and 1001
Solution

Binary Nuftolication (Exansple 2)

(Continued from previous slide .)
Whenever a 0 appears in the multiplier, a separate partial product consisting of a string of zeros need not be generated (only a shift will do). Hence,

1010
x1001
1010
1010SS (S = left shift)

1011010

Binary Divisjos

Table for binary division is as follows:
$0 \div 0=$ Divide by zero error
$0 \div 1=0$
$1 \div 0=$ Divide by zero error
$1 \div 1=1$
As in the decimal number system (or in any other number system), division by zero is meaningless

The computer deals with this problem by raising an error condition called 'Divide by zero' error

Rules for Bitnary Division

1. Start from the left of the dividend
2. Perform a series of subtractions in which the divisor is subtracted from the dividend
3. If subtraction is possible, put a 1 in the quotient and subtract the divisor from the corresponding digits of dividend
4. If subtraction is not possible (divisor greater than remainder), record a 0 in the quotient
5. Bring down the next digit to add to the remainder digits. Proceed as before in a manner similar to long division

Binary Division (Example 1)

Example

Divide 100001_{2} by 110_{2}
Solution 0101 (Quotient)

Divisor greater than 100, so put 0 in quotient Add digit from dividend to group used above Subtraction possible, so put 1 in quotient Remainder from subtraction plus digit from dividend Divisor greater, so put 0 in quotient Add digit from dividend to group Subtraction possible, so put 1 in quotient $\begin{array}{r}110 \\ \hline 11\end{array}$ Remainder

Most computers use the additive method for performing multiplication and division operations because it simplifies the internal circuit design of computer systems

Example

$4 \times 8=8+8+8+8=32$

Rules for Adolitive duethod of Divisjon

B Subtract the divisor repeatedly from the dividend until the result of subtraction becomes less than or equal to zero
B If result of subtraction is zero, then:
B quotient $=$ total number of times subtraction was performed
B remainder $=0$
B If result of subtraction is less than zero, then:
B quotient $=$ total number of times subtraction was performed minus 1

B remainder = result of the subtraction previous to the last subtraction

Additive Method of Division (Example)

Example

Divide 33_{10} by 6_{10} using the method of addition

Solution:

$33-6=27$
$27-6=21$
$21-6=15$
15-6=9
$9-6=3$
$3-6=-3$
Since the result of the last subtraction is less than zero,

Quotient = 6-1 (ignore last

Total subtractions = 6
Remainder $=3$ (result of previous subtraction)

\qquad
\qquad
\qquad
\qquad
Learnjig Objectives
In this chapter you will learn about:
B Reasons for using binary instead of decimal
numbers
B Basic arithmetic operations using binary numbers
BAddition (+)
BSubtraction $(-)$
BMultiplication (*)
B Division (/)
\qquad
\qquad
Reasons for using binary instead of decimal
B Basic arithmetic operations using binary numbers \qquad Addition (+)

BMultiplication (*)
\qquad
Multiplication (*)
\qquad
\qquad

Ref Page 49 \qquad

Bisary over Decinsal

B Information is handled in a computer by electronic/ electrical components \qquad
B Electronic components operate in binary mode (can only indicate two states - on (1) or off (0)
B Binary number system has only two digits (0 and 1), \qquad and is suitable for expressing two possible states
B In binary system, computer circuits only have to handle \qquad two binary digits rather than ten decimal digits causing
\qquad
B Less expensive
B More reliable circuits
B Arithmetic rules/processes possible with binary numbers \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Binary Addtion
Rule for binary addition is as follows: $\begin{aligned} & 0+0=0 \\ & 0+1=1 \\ & 1+0=1 \\ & 1+1=0 \text { plus a carry of } 1 \text { to next higher column } \end{aligned}$

Add binary numbers 10011 and 1001 in both decimal and binary form
Solution

Binary	Decima
carry 11	carry
10011	19
+1001	+9
11100	28

Ref Page 51
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

Subtract 01110_{2} from 10101_{2}
Solution
$\left\{\begin{array}{c}12 \\ 0202\end{array}\right.$
10101
-01110
00111
Note: Go through explanation given in the book

Slide 10/29

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Involves following 3 steps:
Step 1: Find the complement of the number you

are subtracting (subtrahend) | Step 2: Add this to the number from which you |
| ---: |
| are taking away (minuend) |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Binary Snditaction Using Complementary Method (Example 1)

Example

Subtract $0111000_{2}\left(56_{10}\right)$ from $1011100_{2}\left(92_{10}\right)$ using \qquad complementary method.

Solution

1011100
+1000111 (complement of 0111000)
$\stackrel{\square}{\square}$
1 (add the carry of 1)
0100100
Result $=0100100_{2}=36_{10}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Binasy Divisjos

Table for binary division is as follows:
$0 \div 0=$ Divide by zero error
$0 \div 1=0$
$1 \div 0=$ Divide by zero error
$1 \div 1=1$
As in the decimal number system (or in any other number system), division by zero is meaningless \qquad
The computer deals with this problem by raising an error condition called 'Divide by zero' error \qquad
\qquad

[^1]
Example

Divide 100001_{2} by 110_{2}
Solution 0101 (Quotient)
110 100001 (Dividend)
Divisor greater than 100, so put 0 in quotient Add digit from dividend to group used above Subtraction possible, so put 1 in quotient Remainder from subtraction plus digit from dividend Divisor greater, so put 0 in quotient Add digit from dividend to group Subtraction possible, so put 1 in quotient
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Most mult the Exam 4×8	use the additive method for performing and division operations because it simplifies it design of computer systems $8+8=32$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Rules for Aclajejve juethod of Divisjon

B Subtract the divisor repeatedly from the dividend until the result of subtraction becomes less than or equal to zero
B If result of subtraction is zero, then:
ß quotient $=$ total number of times subtraction was performed

B remainder $=0$
B If result of subtraction is less than zero, then:
B quotient $=$ total number of times subtraction was performed minus 1
B remainder = result of the subtraction previous to the last subtraction

Chapter 06

Boolean Algebra and

Logic Circuits
Computer Fundamentals - Pradeep K. Sinha \& Priti Sinha

Learning Objectives

In this chapter you will learn about:

B Boolean algebra
B Fundamental concepts and basic laws of Boolean algebra
B Boolean function and minimization
B Logic gates
B Logic circuits and Boolean expressions
B Combinational circuits and design

Boolean Alget ra

B An algebra that deals with binary number system
is George Boole (1815-1864), an English mathematician, developed it for:

B Simplifying representation
\& Manipulation of propositional logic
ß In 1938, Claude E. Shannon proposed using Boolean algebra in design of relay switching circuits
B Provides economical and straightforward approach
B Used extensively in designing electronic circuits used in computers

Funclanental Consepts of Exoolean Aleebsa

B Use of Binary Digit
B Boolean equations can have either of two possible values, 0 and 1

B Logical Addition
BSymbol '+', also known as 'OR' operator, used for logical addition. Follows law of binary addition
B Logical Multiplication
BSymbol ' \because ', also known as 'AND' operator, used for logical multiplication. Follows law of binary multiplication
B Complementation
BSymbol '-', also known as 'NOT' operator, used for complementation. Follows law of binary compliment

Operator precedence

B Each operator has a precedence level
B Higher the operator's precedence level, earlier it is evaluated
B Expression is scanned from left to right
B First, expressions enclosed within parentheses are evaluated
B Then, all complement (NOT) operations are performed
B Then, all ' \because ' (AND) operations are performed
B Finally, all '+' (OR) operations are performed

Operator precedence

(Continued from previous slide..)

Postulates of Boolean Algetor

Postulate 1:

(a) $A=0$, if and only if, A is not equal to 1
(b) $A=1$, if and only if, A is not equal to 0

Postulate 2:

(a) $x+0=x$
(b) $x \cdot 1=x$

Postulate 3: Commutative Law
(a) $x+y=y+x$
(b) $x \cdot y=y \cdot x$

Postulates or Boolean Algeter

(Continued from previous slide..)
Postulate 4: Associative Law
(a) $x+(y+z)=(x+y)+z$
(b) $x \cdot(y \cdot z)=(x \cdot y) \cdot z$

Postulate 5: Distributive Law
(a) $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
(b) $x+(y \cdot z)=(x+y) \cdot(x+z)$

Postulate 6:
(a) $x+\bar{x}=1$
(b) $x \cdot \bar{x}=0$

The Princtipleof Duslity

There is a precise duality between the operators . (AND) and + (OR), and the digits 0 and 1.

For example, in the table below, the second row is obtained from the first row and vice versa simply by interchanging '+' with '.' and ' 0 ' with ' 1 '

	Column 1	Column 2	Column 3
Row 1	$1+1=1$	$1+0=0+1=1$	$0+0=0$
Row 2	$0 \cdot 0=0$	$0 \cdot 1=1 \cdot 0=0$	$1 \cdot 1=1$

Therefore, if a particular theorem is proved, its dual theorem automatically holds and need not be proved separately

Some Jmportant fheorems of E'ooleanstgeiors

Sr. No.	Theorems/ I dentities	Dual Theorems/ I dentities	Name (if any)
1	$\mathrm{x}+\mathrm{x}=\mathrm{x}$	$\mathrm{x} \cdot \mathrm{x}=\mathrm{x}$	Idempotent Law
2	$\mathrm{x}+1=1$	$\mathrm{x} \cdot 0=0$	
3	$\mathrm{x}+\mathrm{x} \cdot \mathrm{y}=\mathrm{x}$	$\mathrm{x} \cdot \mathrm{x}+\mathrm{y}=\mathrm{x}$	Absorption Law
4	$\overline{\overline{\mathrm{x}}}=\mathrm{x}$		Involution Law
5	$\mathrm{x} \cdot \overline{\mathrm{x}}+\mathrm{y}=\mathrm{x} \cdot \mathrm{y}$	$\mathrm{x}+\overline{\mathrm{x}} \cdot \mathrm{y}=\mathrm{x}+\mathrm{y}$	
6	$\overline{\mathrm{x}+\mathrm{y}}=\overline{\mathrm{x}} \overline{\mathrm{y}}$.	$\overline{\mathrm{x} \cdot \mathrm{y}}=\overline{\mathrm{x}} \overline{\mathrm{y}}+$	De Morgan's Law

The theorems of Boolean algebra may be proved by using one of the following methods:

1. By using postulates to show that L.H.S. = R.H.S
2. By Perfect Induction or Exhaustive Enumeration method where all possible combinations of variables involved in L.H.S. and R.H.S. are checked to yield identical results
3. By the Principle of Duality where the dual of an already proved theorem is derived from the proof of its corresponding pair

proving a Jheoren by Using Posinlates

($\Xi x a m p l e)$

Theorem:

$$
x+x \cdot y=x
$$

Proof:

$$
\begin{aligned}
& \text { L.H.S. } \\
& =x+x \cdot y \\
& =x \cdot 1+x \cdot \\
& =x \cdot(1+y) \\
& =x \cdot(y+1) \\
& =x \cdot 1 \\
& =x \\
& =\text { R.H.S. }
\end{aligned}
$$

$$
=x \cdot 1+x \cdot y \quad \text { by postulate } 2(b)
$$

by postulate 5(a)
by postulate 3(a)
by theorem 2(a)
by postulate 2(b)

proving a lheorens by Perfect Incuction

 (Exandple)Theorem:

$$
x+x \cdot y=x
$$

l \mathbf{x} \mathbf{x} 0	\mathbf{y}	$\mathbf{x} \cdot \mathbf{y}$	$\mathbf{x}+\mathbf{x} \cdot \mathbf{y}$
0	0	0	0
1	1	0	0
1	1	0	1

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Proving a theorem by the
 Principle of Duality (Exansple)

Theorem:

$$
x+x=x
$$

Proof:

$$
\begin{aligned}
& \text { L.H.S. } \\
& =x+x \\
& =(x+x) \\
& =(x+x) \\
& =x+x \cdot \bar{y} \\
& =x+0 \\
& =x \\
& =\text { R.H.S. }
\end{aligned}
$$

$$
=(x+x) \cdot 1 \quad \text { by postulate } 2(b)
$$

$$
=(x+x)-(x+\bar{x}) \quad \text { by postulate } 6(a)
$$

$$
=x+x \cdot \bar{x} \quad \text { by postulate } 5(b)
$$

$$
=x+0 \quad \text { by postulate 6(b) }
$$

Proving a rheoren by the

(Continued from previous slide..)

Dual Theorem:

$$
x \cdot x=x
$$

Proof:

$$
\begin{array}{ll}
\text { L.H.S. } & \\
=x \cdot x & \\
=x \cdot x+0 & \\
=x \cdot x+x \cdot \bar{x} & \\
=x \text { by postulate } 2(\mathrm{a}) \\
=x \cdot(x+\bar{x}) & \\
=x \cdot 1 & \\
=x \text { by postulate } 6(\mathrm{~b}) \\
=x & \\
=\text { R.H.S. } & \\
\text { by postulate } 5(\mathrm{a}) \\
\hline
\end{array}
$$

Notice that each step of the proof of the dual theorem is derived from the proof of its corresponding pair in the original theorem

Boolean functions

B A Boolean function is an expression formed with:
B Binary variables
B Operators (OR, AND, and NOT)
B Parentheses, and equal sign
B The value of a Boolean function can be either 0 or 1
B A Boolean function may be represented as:
B An algebraic expression, or
B A truth table

Representation as an
 Aldéorajc シspressjos

$$
W=X+\bar{Y} \cdot Z
$$

B Variable W is a function of X, Y, and Z, can also be written as $\mathrm{W}=\mathrm{f}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$

B The RHS of the equation is called an expression
B The symbols $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are the literals of the function
B For a given Boolean function, there may be more than one algebraic expressions

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Representation as a Truth fable

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{w}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

(Continued on next slide)

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Representaidon as a Truth Fable

(Continued from previous slide..)
B The number of rows in the table is equal to 2^{n}, where n is the number of literals in the function

B The combinations of $0 s$ and 1 s for rows of this table are obtained from the binary numbers by counting from 0 to $2^{n}-1$

B Minimization of Boolean functions deals with
B Reduction in number of literals
B Reduction in number of terms

B Minimization is achieved through manipulating expression to obtain equal and simpler expression(s) (having fewer literals and/or terms)

(Continued from previous slide..)

$$
F_{1}=\bar{x} \cdot \bar{y} \cdot z+\bar{x} \cdot y \cdot z+x \cdot \bar{y}
$$

F_{1} has 3 literals (x, y, z) and 3 terms
$F_{2}=x \cdot \bar{y}+\bar{x} \cdot z$
F_{2} has 3 literals (x, y, z) and 2 terms
F_{2} can be realized with fewer electronic components, resulting in a cheaper circuit

Mjnjnization of Booleanfunctions

(Continued from previous slide..)

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{F}_{\mathbf{1}}$	$\mathbf{F}_{\mathbf{2}}$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

Both F_{1} and F_{2} produce the same result

Try out some Boolean Function
からnjnjzacion
(a) $x+x \cdot y$
(b) $x \cdot(\bar{x}+y)$
(c) $\bar{x} \cdot \bar{y} \cdot z+\bar{x} \cdot y \cdot z+x \cdot \bar{y}$
(d) $x \cdot y+\bar{x} \cdot z+y \cdot z$
(e) $(x+y) \cdot(\bar{x}+z) \cdot(y+z)$

Complensent of a Boolean function

B The complement of a Boolean function is obtained by interchanging:

B Operators OR and AND
B Complementing each literal
B This is based on De Morgan's theorems, whose general form is:

$$
\begin{aligned}
& \overline{\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}+\ldots+\mathrm{A}_{n}}=\overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{~A}}_{2} \cdot \overline{\mathrm{~A}}_{3} \cdot \ldots \cdot \overline{\mathrm{~A}}_{n} \\
& \overline{\mathrm{~A}_{1} \cdot \mathrm{~A}_{2} \cdot \mathrm{~A}_{3} \cdot \ldots \cdot \mathrm{~A}_{n}}=\overline{\mathrm{A}}_{1}+\overline{\mathrm{A}}_{2}+\overline{\mathrm{A}}_{3}+\ldots+\overline{\mathrm{A}}_{n}
\end{aligned}
$$

Complementing an Boolean Function (ヨxanaple)

$$
F_{1}=\bar{x} \cdot y \cdot \bar{z}+\bar{x} \cdot \bar{y} \cdot z
$$

To obtain \bar{F}_{1}, we first interchange the OR and the AND operators giving

$$
(\bar{x}+y+\bar{z}) \cdot(\bar{x}+\bar{y}+z)
$$

Now we complement each literal giving

$$
\overline{F_{1}}=(x+\bar{y}+z) \cdot(x+y+\bar{z})
$$

Canonical forms of Boolean functions

Minterms : n variables forming an AND term, with each variable being primed or unprimed, provide 2^{n} possible combinations called minterms or standard products

Maxterms : n variables forming an OR term, with each variable being primed or unprimed, provide 2^{n} possible combinations called maxterms or standard sums

Variables			Minterms		Maxterms	
x	y	z	Term	Designation	Term	Designation
0	0	0	$\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \cdot \overline{\mathrm{z}}$	m_{0}	$\mathrm{x}+\mathrm{y}+\mathrm{z}$	M_{0}
0	0	1	$\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \cdot \mathrm{z}$	m_{1}	$\mathrm{x}+\mathrm{y}+\overline{\mathrm{z}}$	M_{1}
0	1	0	$\overline{\mathrm{x}} \cdot \mathrm{y} \cdot \overline{\mathrm{z}}$	m_{2}	$\mathrm{x}+\overline{\mathrm{y}}+\mathrm{z}$	M_{2}
0	1	1	$\overline{\mathrm{x}} \cdot \mathrm{y} \cdot \mathrm{z}$	m_{3}	$\mathrm{x}+\overline{\mathrm{y}}+\overline{\mathrm{z}}$	M_{3}
1	0	0	$\mathrm{x} \cdot \overline{\mathrm{y}} \cdot \overline{\mathrm{z}}$	m_{4}	$\overline{\mathrm{x}}+\mathrm{y}+\mathrm{z}$	M_{4}
1	0	1	$\mathrm{x} \cdot \overline{\mathrm{y}} \cdot \mathrm{z}$	m_{5}	$\overline{\mathrm{x}}+\mathrm{y}+\overline{\mathrm{z}}$	M_{5}
1	1	0	$\mathrm{x} \cdot \mathrm{y} \cdot \overline{\mathrm{z}}$	m_{6}	$\overline{\mathrm{x}}+\overline{\mathrm{y}}+\mathrm{z}$	M_{6}
1	1	1	$\mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z}$	m_{7}	$\overline{\mathrm{x}}+\overline{\mathrm{y}}+\overline{\mathrm{z}}$	M_{7}

Note that each minterm is the complement of its corresponding maxterm and vice-versa

Sun-offlproducts (50p) Expression

A sum-of-products (SOP) expression is a product term (minterm) or several product terms (minterms) logically added (ORed) together. Examples are:

$$
\begin{array}{ll}
x & x+y \\
x+y \cdot z & x \cdot y+z \\
x \cdot \bar{y}+\bar{x} \cdot y & \bar{x} \cdot \bar{y}+x \cdot \bar{y} \cdot z
\end{array}
$$

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Steps to Express a Boolean Function

1. Construct a truth table for the given Boolean function
2. Form a minterm for each combination of the variables, which produces a 1 in the function
3. The desired expression is the sum (OR) of all the minterms obtained in Step 2

Expressing a Function in jes

x	y	z	F_{1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

The following 3 combinations of the variables produce a 1 :

$$
001,100 \text {, and } 111
$$

Expressing a アunction in jes
 Sunn-of゙-producis forsn (Esansple)

(Continued from previous slide..)
B Their corresponding minterms are:

$$
\bar{x} \cdot \bar{y} \cdot z, \quad x \cdot \bar{y} \cdot \bar{z}, \quad \text { and } \quad x \cdot y \cdot z
$$

B Taking the OR of these minterms, we get

$$
\begin{aligned}
& \mathrm{F}_{1}=\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \cdot \mathrm{z}+\mathrm{x} \cdot \overline{\mathrm{y}} \cdot \overline{\mathrm{z}}+\mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z}=\mathrm{m}_{1}+\mathrm{m}_{4}+\mathrm{m}_{7} \\
& \mathrm{~F}_{1}(\mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z})=\Sigma(1,4,7)
\end{aligned}
$$

Productrofisunas (posi) Expression

A product-of-sums (POS) expression is a sum term (maxterm) or several sum terms (maxterms) logically multiplied (ANDed) together. Examples are:

$$
\begin{array}{ll}
x & (x+\bar{y}) \cdot(\bar{x}+y) \cdot(\bar{x}+\bar{y}) \\
\bar{x}+y & (x+y) \cdot(\bar{x}+y+z) \\
(\bar{x}+\bar{y}) \cdot z & (\bar{x}+y) \cdot(x+\bar{y})
\end{array}
$$

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Steps to Express a Boolean runcijon

1. Construct a truth table for the given Boolean function
2. Form a maxterm for each combination of the variables, which produces a 0 in the function
3. The desired expression is the product (AND) of all the maxterms obtained in Step 2

Expressing a runction in jes
 Productiof゙－ラリuns デorss

x	y	z	F_{1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

B The following 5 combinations of variables produce a 0 ：

$$
\text { 000, 010, 011, 101, and } 110
$$

Expressing a runction is jes

Product－of゙－ごわn」s デorss
（Continued from previous slide．．）
ß Their corresponding maxterms are：

$$
\begin{aligned}
& (x+y+z),(x+\bar{y}+z),(x+\bar{y}+\bar{z}), \\
& (\bar{x}+y+\bar{z}) \text { and }(\bar{x}+\bar{y}+z)
\end{aligned}
$$

B Taking the AND of these maxterms，we get：

$$
\begin{aligned}
& F_{1}=(x+y+z) \cdot(x+\bar{y}+z) \cdot(x+\bar{y}+\bar{z}) \cdot(\bar{x}+y+\bar{z}) \\
& \quad(\bar{x}+\bar{y}+z)=M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{5} \cdot M_{6} \\
& F_{1}(x, y, z)=\Pi(0,2,3,5,6)
\end{aligned}
$$

Computer Fundamentals：Pradeep K．Sinha \＆Priti Sinha

Conversjon Betueen Canonjcal forms（Sunn－oj＂ Products and Productiof゙－ラリnns）

To convert from one canonical form to another， interchange the symbol and list those numbers missing from the original form．

Example：

$$
\begin{aligned}
& F(x, y, z)=\Pi(0,2,4,5)=\Sigma(1,3,6,7) \\
& F(x, y, z)=\Pi(1,4,7)=\Sigma(0,2,3,5,6)
\end{aligned}
$$

Logic Gates

B Logic gates are electronic circuits that operate on one or more input signals to produce standard output signal

B Are the building blocks of all the circuits in a computer

B Some of the most basic and useful logic gates are AND, OR, NOT, NAND and NOR gates

AND GEIE

B Physical realization of logical multiplication (AND) operation

B Generates an output signal of 1 only if all input signals are also 1

AND Gate (Block Diagrans Sysseol

Inputs		Output
A	B	$\mathrm{C}=\mathrm{A} \cdot \mathrm{B}$
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

B Physical realization of logical addition (OR) operation
B Generates an output signal of 1 if at least one of the input signals is also 1

Of Gate (Block Diagrans Symbol

Inputs		Output
A	B	$\mathrm{C}=\mathrm{A}+\mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	1

NOT Gate

B Physical realization of complementation operation
B Generates an output signal, which is the reverse of the input signal

NOT Gate (Block Diagrans Šysuol

Input	Output
A	$\overline{\mathrm{A}}$
0	1
1	0

NAND Gate

B Complemented AND gate
B Generates an output signal of:

B 1 if any one of the inputs is a 0
B 0 when all the inputs are 1

NAND Gate (Block Diagrons Sysubol

Inputs		Output
A	B	$\mathrm{C}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate

B Complemented OR gate
B Generates an output signal of:

B 1 only when all inputs are 0
B 0 if any one of inputs is a 1

NOR Gate (Block Diagrans Sysubol

Inputs		Output
A	B	$\mathrm{C}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$
0	0	1
0	1	0
1	0	0
1	1	0

Logic Circtits

B When logic gates are interconnected to form a gating / logic network, it is known as a combinational logic circuit

B The Boolean algebra expression for a given logic circuit can be derived by systematically progressing from input to output on the gates

B The three logic gates (AND, OR, and NOT) are logically complete because any Boolean expression can be realized as a logic circuit using only these three gates
finding Boolean Expression
of゙ a Logje Circuji (Esausple L)

Finding Boolean Expression

of a Logic Circulit (Exassple 2)

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.
Consiructing a Logic Circuje foon a Boolean Expressjon (Exansple 1)

$$
\text { Boolean Expression }=\mathrm{A} \cdot \mathrm{~B}+\mathrm{C}
$$

Computer Fundamentals：Pradeep K．Sinha \＆Priti Sinha

Constructing a Logjc Ciscuje foon a Boolean Expressjon（シャョusple 2）

$$
\text { Boolean Expression }=\overline{\mathrm{A} \cdot \mathrm{~B}}+\mathrm{C} \cdot \mathrm{D}+\overline{\mathrm{E} \cdot \mathrm{~F}}
$$

UnJVersejuland Gejce

\& NAND gate is an universal gate, it is alone sufficient to implement any Boolean expression
\& To understand this, consider:
ß Basic logic gates (AND, OR, and NOT) are logically complete

B Sufficient to show that AND, OR, and NOT gates can be implemented with NAND gates

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Jmplementaijon of NOT, AND ans OB GEves by NAND Gコエes

(a) NOT gate implementation.

(b) AND gate implementation.

Jmplementation of NOT, AND and ORGELES by NAND Gares

(Continued from previous slide..)

(c) OR gate implementation.

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Step 1: From the given algebraic expression, draw the logic diagram with AND, OR, and NOT gates. Assume that both the normal (A) and complement ($\overline{\mathrm{A}}$) inputs are available

Step 2: Draw a second logic diagram with the equivalent NAND logic substituted for each AND, OR, and NOT gate

Step 3: Remove all pairs of cascaded inverters from the diagram as double inversion does not perform any logical function. Also remove inverters connected to single external inputs and complement the corresponding input variable

$$
\text { Boolean Expression }=A \cdot \bar{B}+C \cdot(A+B \cdot D)
$$

(a) Step 1: AND/OR implementation

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha..

Jnplementing a Boolean Expressjonnujis OnJy NANDD Ga゙es (Exanfole)

(Continued from previous slide..)

(b) Step 2: Substituting equivalent NAND functions

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
」nplensenting a Boolean Expressjonluijis OnJy

(Continued from previous slide..)

(c) Step 3: NAND implementation.

UnJVersalnon cate

B NOR gate is an universal gate, it is alone sufficient to implement any Boolean expression

B To understand this, consider:
B Basic logic gates (AND, OR, and NOT) are logically complete

B Sufficient to show that AND, OR, and NOT gates can be implemented with NOR gates

Jsuplensentation of NOT, OR and AMD GEres by NOR Gaices

(a) NOT gate implementation.

(b) OR gate implementation.

Insplenentation of NOT, OR and AMD Gares by NOR Gaies

(Continued from previous slide..)

Computer Fundamentals: Pradeep K. Simha \& Priti Sinha.

以边hod of Jmplementing a Boolean Expressjon

Step 1: For the given algebraic expression, draw the logic diagram with AND, OR, and NOT gates. Assume that both the normal (A) and complement ($\overline{\mathrm{A}})$ inputs are available

Step 2: Draw a second logic diagram with equivalent NOR logic substituted for each AND, OR, and NOT gate

Step 3: Remove all parts of cascaded inverters from the diagram as double inversion does not perform any logical function. Also remove inverters connected to single external inputs and complement the corresponding input variable

Jnplenenting a Boolean Expression wicin Only NOR Gates (Exasfples)
(Continued from previous slide..)

Boolean Expression $A \cdot \bar{B}+C \cdot(A+B \cdot D)$

(a) Step 1: AND/OR implementation.

Jnplensenting a Boolean Expressionnuicis OnJy NOR Gares (Esansples)

(Continued from previous slide..)

(b) Step 2: Substituting equivalent NOR functions.
(Continued on next slide)

(c) Step 3: NOR implementation.

Exclusjye-ors junction

$$
\mathrm{A} \oplus \mathrm{~B}=\mathrm{A} \cdot \overline{\mathrm{~B}}+\overline{\mathrm{A}} \cdot \mathrm{~B}
$$

Also, $(A \oplus B) \oplus C=A \oplus(B \oplus C)=A \oplus B \oplus C$

Exclusive-oratunction (rsumitable)

(Continued from previous slide..)

Inputs		Output
A	B	$\mathrm{C}=\mathrm{A} \oplus \mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	0

Equjvalence runcijon with Block Djag eus Syonbol

$$
\mathrm{A} \ddot{\mathrm{~A}} \mathrm{~B}=\mathrm{A} \cdot \mathrm{~B}+\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}
$$

Also, $(A \ddot{A} B) \ddot{A}=A \ddot{A}(B \ddot{A} C)=A \ddot{A} B \ddot{A} C$

Eguivalenceranction (fruthriable)

Inputs		Output
A	B	C = A Ä B
0	0	1
0	1	0
1	0	0
1	1	1

Steps in Desjening Consoinerional Circulis

1. State the given problem completely and exactly
2. Interpret the problem and determine the available input variables and required output variables
3. Assign a letter symbol to each input and output variables
4. Design the truth table that defines the required relations between inputs and outputs
5. Obtain the simplified Boolean function for each output
6. Draw the logic circuit diagram to implement the Boolean function

Designing a Compinacional Circujt Example 1 - flalf-Adcler Desigs

Inputs		Outputs	
A	B	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$
\left.\begin{array}{l}
\mathrm{S}=\overline{\mathrm{A}} \cdot \mathrm{~B}+\mathrm{A} \cdot \overline{\mathrm{~B}} \\
\mathrm{C}=\mathrm{A} \cdot \mathrm{~B}
\end{array}\right\} \text { Boolean functions for the two outputs. }
$$

Designing a Combinational Circulit Example 1 - fialiondder Design

(Continued from previous slide..)

Logic circuit diagram to implement the Boolean functions

Designing a Compinacional Circujt

Inputs			Outputs	
A	B	D	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Truth table for a full adder

Designing a Conobjnacional Circuit Exanfple 2 - FulJ-Adser Desjes

(Continued from previous slide..)

Boolean functions for the two outputs:

$$
\begin{aligned}
S & =\bar{A} \cdot \bar{B} \cdot D+\bar{A} \cdot B \cdot \bar{D}+A \cdot \bar{B} \cdot \bar{D}+A \cdot B \cdot D \\
C & =\bar{A} \cdot B \cdot D+A \cdot \bar{B} \cdot D+A \cdot B \cdot \bar{D}+A \cdot B \cdot D \\
& =A \cdot B+A \cdot D+B \cdot D \quad(\text { when simplified })
\end{aligned}
$$

Desjening a Connejnacional Circujs Exanfole 2 - FulJ-Adser Desjes

(Continued from previous slide..)

(a) Logic circuit diagram for sums

Designing a Combinational Circult Example 2 - Full Adder Desigr

(Continued from previous slide..)

(b) Logic circuit diagram for carry

Key WordS/ Phocees

B Absorption law
B AND gate
B Associative law
B Boolean algebra
B Boolean expression
B Boolean functions
B Boolean identities
B Canonical forms for
Boolean functions
B Combination logic
circuits
B Cumulative law
B Complement of a
function
B Complementation
B De Morgan's law
B Distributive law
B Dual identities

B Equivalence function
B Exclusive-OR function
B Exhaustive enumeration method
B Half-adder
B Idempotent law
B Involution law
B Literal
B Logic circuits
B Logic gates
B Logical addition
B Logical multiplication
B Maxterms
B Minimization of Boolean functions
B Minterms
B NAND gate

B NOT gate
B Operator precedence
B OR gate
B Parallel Binary Adder
B Perfect induction method
B Postulates of Boolean algebra
B Principle of duality
B Product-of-Sums expression
B Standard forms
B Sum-of Products expression
B Truth table
B Universal NAND gate
B Universal NOR gate

Chapter 06

Boolean Algebra and Logic Circuits

Computer fundamentals - Pradeep K. Sinha \& Pirili Sinha

Learning Objectives

In this chapter you will learn about:

B Boolean algebra
B Fundamental concepts and basic laws of Boolean algebra
B Boolean function and minimization
B Logic gates
B Logic circuits and Boolean expressions
B Combinational circuits and design

Computier Fundamentals. Pradeep K. Sinha \& Priti Sinha-

Boolears Algeta

B An algebra that deals with binary number system
ß George Boole (1815-1864), an English mathematician, developed it for:
\& Simplifying representation
\& Manipulation of propositional logic
B In 1938, Claude E. Shannon proposed using Boolean algebra in design of relay switching circuits
B Provides economical and straightforward approach
B Used extensively in designing electronic circuits used in computers

Computer Fundamentals! Pradeep K. Sinha \& Priti Sinhar
Fundanental Concepis of Boolean Algérs

B Use of Binary Digit
\AA Boolean equations can have either of two possible values, 0 and 1
B Logical Addition
B Symbol ' + ', also known as 'OR' operator, used for logical addition. Follows law of binary addition
B Logical Multiplication
ß Symbol '.', also known as 'AND' operator, used for logical multiplication. Follows law of binary multiplication
B Complementation
B Symbol '-', also known as 'NOT' operator, used for complementation. Follows law of binary compliment

Operator precedence

B Each operator has a precedence level
B Higher the operator's precedence level, earlier it is evaluated
B Expression is scanned from left to right
B First, expressions enclosed within parentheses are evaluated
B Then, all complement (NOT) operations are performed
B Then, all ' ${ }^{\prime}$ ' (AND) operations are performed
B Finally, all ' + ' (OR) operations are performed

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Operator precedence

(Continued from previous slide..)

postulates or Boolean Algeter

Postulate 1:

(a) $A=0$, if and only if, A is not equal to 1
(b) $A=1$, if and only if, A is not equal to 0

Postulate 2:

(a) $x+0=x$
(b) $x \cdot 1=x$

Postulate 3: Commutative Law
(a) $x+y=y+x$
(b) $x \cdot y=y \cdot x$

Postulates or Boolean Algeta

(Continued from previous slide)
Postulate 4: Associative Law
(a) $x+(y+z)=(x+y)+z$
(b) $x \cdot(y \cdot z)=(x \cdot y) \cdot z$

Postulate 5: Distributive Law

(a) $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
(b) $x+(y \cdot z)=(x+y) \cdot(x+z)$

Postulate 6:

(a) $x+\bar{x}=1$
(b) $x \cdot \bar{x}=0$

The Princtiple of Dujlity

There is a precise duality between the operators . (AND) and + (OR), and the digits 0 and 1.

For example, in the table below, the second row is obtained from the first row and vice versa simply by interchanging ' + ' with '.' and ' 0 ' with ' 1 '

	Column 1	Column 2	Column 3
Row 1	$1+1=1$	$1+0=0+1=1$	$0+0=0$
Row 2	$0 \cdot 0=0$	$0 \cdot 1=1 \cdot 0=0$	$1 \cdot 1=1$

Therefore, if a particular theorem is proved, its dual theorem automatically holds and need not be proved separately

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Some Important fheorems of Eoolean Algetora

Sr. No.	Theorems/ I dentities	Dual Theorems/ I dentities	Name (if any)
1	$x+x=x$	$x \cdot x=x$	Idempotent Law
2	$x+1=1$	$x \cdot 0=0$	Absorption Law
3	$x+x \cdot y=x$	$x \cdot x+y=x$	Involution Law
4	$\overline{\bar{x}}=x$	$\bar{x} \cdot \mathrm{y}=\bar{x} \bar{y}+$	De Morgan's Law
5	$x \cdot \bar{x}+y=x \cdot y$	$x+\bar{x} \cdot y=x+y$	
6	$\overline{x+y}=\bar{x} \bar{y} \cdot$		

Methods of proving Theorens

The theorems of Boolean algebra may be proved by using one of the following methods:

1. By using postulates to show that L.H.S. $=$ R.H.S
2. By Perfect Induction or Exhaustive Enumeration method where all possible combinations of variables involved in L.H.S. and R.H.S. are checked to yield identical results
3. By the Principle of Duality where the dual of an already proved theorem is derived from the proof of its corresponding pair

Proving a Theorem by Using Postulates (Esas』ple)

Theorem:

$$
x+x \cdot y=x
$$

Proof:
L.H.S.

$$
\begin{array}{ll}
=x+x \cdot y & \\
=x \cdot 1+x \cdot y & \\
=x \cdot(1+y) & \\
=x \cdot(y+1) & \\
=x \cdot 1 & \\
=x & \\
=x \text { by postulate } 2(b) \\
=\text { R.H.S. } &
\end{array}
$$

Proving a fheorem by Perfect Incuction

(Exancle)

Theorem:

$$
x+x \cdot y=x
$$

$l \mid$ \mathbf{x}	\mathbf{y}	$\mathbf{x} \cdot \mathbf{y}$	$\mathbf{x}+\mathbf{x} \cdot \mathbf{y}$
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

proving a Theorem dy the

Theorem:

$$
x+x=x
$$

Proof:
L.H.S.
$=x+x$
$=(x+x) \cdot 1 \quad$ by postulate $2(b)$
$=(x+x) \cdot(x+\bar{X}) \quad$ by postulate 6(a)
$=x+x \cdot \bar{x} \quad$ by postulate $5(b)$
$=x+0$
by postulate 6(b)
by postulate 2(a)
$=$ R.H.S.

Proving a fheorem by the
 Psinciple of DゆコJivy (Exassple)

(Continued from previous slide..)

Dual Theorem:

$$
x \cdot x=x
$$

Proof:

> L.H.S. $=x \cdot x$ $=x \cdot x+0$ $=x \cdot x+x \cdot \bar{x}$ $=x \cdot(x+\bar{x})$ $=x \cdot 1$ $=x$ $=$ R.H.S.
$=x \cdot x+0 \quad$ by postulate $2(a) \quad$ Notice that each step of by postulate 6(b) the proof of the dual by postulate 5(a)
by postulate 6(a) theorem is derived from
by postulate 2(b) the proof of its corresponding pair in the original theorem

Boolean Functions

BA Boolean function is an expression formed with:
B Binary variables
B Operators (OR, AND, and NOT)
B Parentheses, and equal sign
β The value of a Boolean function can be either 0 or 1
B A Boolean function may be represented as:
B An algebraic expression, or
B A truth table

Representationas an

Algebraic Expression

$$
W=X+\bar{Y} \cdot Z
$$

B Variable W is a function of X, Y, and Z, can also be written as $W=f(X, Y, Z)$

B The RHS of the equation is called an expression
B The symbols X, Y, Z are the literals of the function
ß For a given Boolean function, there may be more than one algebraic expressions

Representaion as a fruit Foble

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{w}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Representation as a Truth Table

(Continued from previous slide..)
B The number of rows in the table is equal to 2^{n}, where n is the number of literals in the function

B The combinations of $0 s$ and 1 s for rows of this table are obtained from the binary numbers by counting from 0 to $2^{\mathrm{n}}-1$

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Minjnfzation of Boolean Functions

B Minimization of Boolean functions deals with
B Reduction in number of literals
B Reduction in number of terms

B Minimization is achieved through manipulating expression to obtain equal and simpler expression(s) (having fewer literals and/or terms)

Minnivetion of Boolean Functions

(Continued from previous slide..)

$$
F_{1}=\bar{x} \cdot \bar{y} \cdot z+\bar{x} \cdot y \cdot z+x \cdot \bar{y}
$$

F_{1} has 3 literals (x, y, z) and 3 terms
$F_{2}=x \cdot \bar{y}+\bar{x} \cdot z$
F_{2} has 3 literals (x, y, z) and 2 terms
F_{2} can be realized with fewer electronic components, resulting in a cheaper circuit

Minjufzation of exoolean functions

(Continued from previous slide..)

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{F}_{\mathbf{1}}$	$\mathbf{F}_{\mathbf{2}}$
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	0	0
1	1	1	0	0

Both F_{1} and F_{2} produce the same result

Try out some Boolean Function

Dinnimization

(a) $\mathrm{x}+\overline{\mathrm{x}} \cdot \mathrm{y}$
(b) $x \cdot(\bar{x}+y)$
(c) $\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \cdot \mathrm{z}+\overline{\mathrm{x}} \cdot \mathrm{y} \cdot \mathrm{z}+\mathrm{x} \cdot \overline{\mathrm{y}}$
(d) $x \cdot y+\bar{x} \cdot z+y \cdot z$
(e) $(x+y) \cdot(\bar{x}+z) \cdot(y+z)$

Conplemsent of a Boolean function

B The complement of a Boolean function is obtained by interchanging:

B Operators OR and AND
B Complementing each literal
B This is based on De Morgan's theorems, whose general form is:

$$
\begin{aligned}
& \overline{\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}+\ldots+\mathrm{A}_{n}}=\overline{\mathrm{A}}_{1} \cdot \overline{\mathrm{~A}}_{2} \cdot \overline{\mathrm{~A}}_{3} \cdot \ldots \cdot \overline{\mathrm{~A}}_{n} \\
& \overline{\mathrm{~A}_{1} \cdot \mathrm{~A}_{2} \cdot \mathrm{~A}_{3} \cdot \ldots \cdot \mathrm{~A}_{n}}=\overline{\mathrm{A}}_{1}+\overline{\mathrm{A}}_{2}+\overline{\mathrm{A}}_{3}+\ldots+\overline{\mathrm{A}}_{n}
\end{aligned}
$$

Complementing aboolean function (Example)

$$
F_{1}=\bar{x} \cdot y \cdot \bar{z}+\bar{x} \cdot \bar{y} \cdot z
$$

To obtain \bar{F}_{1}, we first interchange the OR and the AND operators giving

$$
(\bar{x}+y+\bar{z}) \cdot(\bar{x}+\bar{y}+z)
$$

Now we complement each literal giving
$\overline{F_{1}}=(x+\bar{y}+z) \cdot(x+y+\bar{z})$

Canonical fornens of Bioolean functions

Minterms : n variables forming an AND term, with each variable being primed or unprimed, provide 2^{n} possible combinations called minterms or standard products

Maxterms : n variables forming an OR term, with each variable being primed or unprimed, provide 2^{n} possible combinations called maxterms or standard sums

Minterms and Maxterms for three Varbebles

Variables		Minterms		Maxterms		
x	y	z	Term	Designation	Term	Designation
0	0	0	$\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \cdot \overline{\mathrm{z}}$	m_{0}	$\mathrm{x}+\mathrm{y}+\mathrm{z}$	M_{0}
0	0	1	$\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \cdot \mathrm{z}$	m_{1}	$\mathrm{x}+\mathrm{y}+\overline{\mathrm{z}}$	M_{1}
0	1	0	$\overline{\mathrm{x}} \cdot \mathrm{y} \cdot \overline{\mathrm{z}}$	m_{2}	$\mathrm{x}+\overline{\mathrm{y}}+\mathrm{z}$	M_{2}
0	1	1	$\overline{\mathrm{x}} \cdot \mathrm{y} \cdot \mathrm{z}$	m_{3}	$\mathrm{x}+\overline{\mathrm{y}}+\overline{\mathrm{z}}$	M_{3}
1	0	0	$\mathrm{x} \cdot \overline{\mathrm{y}} \cdot \overline{\mathrm{z}}$	m_{4}	$\overline{\mathrm{x}}+\mathrm{y}+\mathrm{z}$	M_{4}
1	0	1	$\mathrm{x} \cdot \overline{\mathrm{y}} \cdot \mathrm{z}$	m_{5}	$\overline{\mathrm{x}}+\mathrm{y}+\overline{\mathrm{z}}$	M_{5}
1	1	0	$\mathrm{x} \cdot \mathrm{y} \cdot \overline{\mathrm{z}}$	m_{6}	$\overline{\mathrm{x}}+\overline{\mathrm{y}}+\mathrm{z}$	M_{6}
1	1	1	$\mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z}$	m_{7}	$\overline{\mathrm{x}}+\overline{\mathrm{y}}+\overline{\mathrm{z}}$	M_{7}

Note that each minterm is the complement of its corresponding maxterm and vice-versa

Sun-offlproducts (SOP) Expression

A sum-of-products (SOP) expression is a product term (minterm) or several product terms (minterms) logically added (ORed) together. Examples are:
X

$$
x+y
$$

$x+y \cdot z$
$x \cdot y+z$
$x \cdot \bar{y}+\bar{x} \cdot y$
$\bar{x} \cdot \bar{y}+x \cdot \bar{y} \cdot z$

Steps to Express a Buolean Function

1ヶ 」

1. Construct a truth table for the given Boolean function
2. Form a minterm for each combination of the variables, which produces a 1 in the function
3. The desired expression is the sum (OR) of all the minterms obtained in Step 2

Expressing a function in jes

x	y	z	F_{1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

The following 3 combinations of the variables produce a 1 : 001, 100, and 111

Expressing a Function in jes

(Continued from previous slide..)
B Their corresponding minterms are:

$$
\bar{x} \cdot \bar{y} \cdot z, \quad x \cdot \bar{y} \cdot \bar{z}, \quad \text { and } \quad x \cdot y \cdot z
$$

B Taking the OR of these minterms, we get

$$
\begin{aligned}
& \mathrm{F}_{1}=\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \cdot \mathrm{z}+\mathrm{x} \cdot \overline{\mathrm{y}} \cdot \overline{\mathrm{z}}+\mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z}=\mathrm{m}_{1}+\mathrm{m}_{4}+\mathrm{m}_{7} \\
& \mathrm{~F}_{1}(\mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z})=\sum(1,4,7)
\end{aligned}
$$

Productoof Sunns (pos) Expression

A product-of-sums (POS) expression is a sum term (maxterm) or several sum terms (maxterms) logically multiplied (ANDed) together. Examples are:

$$
\begin{array}{ll}
x & (x+\bar{y}) \cdot(\bar{x}+y) \cdot(\bar{x}+\bar{y}) \\
\bar{x}+y & (x+y) \cdot(\bar{x}+y+z) \\
(\bar{x}+\bar{y}) \cdot z & (\bar{x}+y) \cdot(x+\bar{y})
\end{array}
$$

Steps to Express a Boolean Function

in jis Productofisunas forms
1．Construct a truth table for the given Boolean function
2．Form a maxterm for each combination of the variables， which produces a 0 in the function

3．The desired expression is the product（AND）of all the maxterms obtained in Step 2

Computer Fundamentals！Pradeep K．Sinna \＆Priti Sinha

Expressing a Function in jes

Productiof゙－ごussE デ0ヶss

x	y	z	F_{1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

B The following 5 combinations of variables produce a 0 ： 000，010，011，101，and 110

B Their corresponding maxterms are:

$$
\begin{aligned}
& (x+y+z),(x+\bar{y}+z),(x+\bar{y}+\bar{z}), \\
& (\bar{x}+y+\bar{z}) \text { and }(\bar{x}+\bar{y}+z)
\end{aligned}
$$

B Taking the AND of these maxterms, we get:

$$
\begin{aligned}
& F_{1}=(x+y+z) \cdot(x+\bar{y}+z) \cdot(x+\bar{y}+\bar{z}) \cdot(\bar{x}+y+\bar{z}) . \\
& \quad(\bar{x}+\bar{y}+z)=M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{5} \cdot M_{6} \\
& F_{1}(x, y, z)=\Pi(0,2,3,5,6)
\end{aligned}
$$

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Conversjon Bebjeen Canonjeal fornss (Junn-oj゙-

To convert from one canonical form to another, interchange the symbol and list those numbers missing from the original form.

Example:

$$
\begin{aligned}
& F(x, y, z)=\Pi(0,2,4,5)=\Sigma(1,3,6,7) \\
& F(x, y, z)=\Pi(1,4,7)=\Sigma(0,2,3,5,6)
\end{aligned}
$$

Logic Gates

B Logic gates are electronic circuits that operate on one or more input signals to produce standard output signal

B Are the building blocks of all the circuits in a computer

B Some of the most basic and useful logic gates are AND, OR, NOT, NAND and NOR gates

AND Gate

B Physical realization of logical multiplication (AND) operation

B Generates an output signal of 1 only if all input signals are also 1

AND Gate (Block Diagram Symbol
and Truth Taigle)

Inputs		Output
A	B	$\mathrm{C}=\mathrm{A} \cdot \mathrm{B}$
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

B Physical realization of logical addition (OR) operation
B Generates an output signal of 1 if at least one of the input signals is also 1

Ois Gate (Block Diagrans Symbol

Inputs		Output
A	B	$\mathrm{C}=\mathrm{A}+\mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	1

NOT Gate

B Physical realization of complementation operation
B Generates an output signal, which is the reverse of the input signal

NOT Gate (Block Diagram Symbol

and Truth (Jable)

Input	Output
A	$\overline{\mathrm{A}}$
0	1
1	0

NAND GETE

B Complemented AND gate
B Generates an output signal of:

B 1 if any one of the inputs is a 0
B 0 when all the inputs are 1

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
NAND Gate (Block Diagram Symbol

Inputs		Output
A	B	$\mathrm{C}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$
0	0	1
0	1	1
1	0	1
1	1	0

NOR Gate

B Complemented OR gate
B Generates an output signal of:

B 1 only when all inputs are 0
B 0 if any one of inputs is a 1

```
NOR Gate (Block Djagrass Syssbol
```


Inputs		Output
A	B	$\mathrm{C}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$
0	0	1
0	1	0
1	0	0
1	1	0

Logic Cjrcijis

B When logic gates are interconnected to form a gating / logic network, it is known as a combinational logic circuit

B The Boolean algebra expression for a given logic circuit can be derived by systematically progressing from input to output on the gates

B The three logic gates (AND, OR, and NOT) are logically complete because any Boolean expression can be realized as a logic circuit using only these three gates

Finding Boolean Expression
of̈ a Logic Cirsulit (Esansple 1)

Finding Boolean Expression of a Logjc Cirsulit (Example 2)


```
Boolean Expression = A B +C
```


Constructing a Logic Circuit from a Boolean
Expression (Esanple 2)

$$
\text { Boolean Expression }=\overline{\mathrm{A} \cdot \mathrm{~B}}+\mathrm{C} \cdot \mathrm{D}+\overline{\mathrm{E} \cdot \mathrm{~F}}
$$

UnJVersej Mand Gate

B NAND gate is an universal gate, it is alone sufficient to implement any Boolean expression
B To understand this, consider:
B Basic logic gates (AND, OR, and NOT) are logically complete

B Sufficient to show that AND, OR, and NOT gates can be implemented with NAND gates

Inplenentation of NOT, AND ans OBGEres by NAND Gates

(a) NOT gate implementation.

(b) AND gate implementation.

Implementation of NOT, AND and OR Gares by

 NAND Gaies(Continued from previous slide..)

(c) OR gate implementation.

Nethod of Jmplementing a E'oolean Expression Wifi Only NAND Gates

Step 1: From the given algebraic expression, draw the logic diagram with AND, OR, and NOT gates. Assume that both the normal (A) and complement ($\overline{\mathrm{A}}$) inputs are available

Step 2: Draw a second logic diagram with the equivalent NAND logic substituted for each AND, OR, and NOT gate

Step 3: Remove all pairs of cascaded inverters from the diagram as double inversion does not perform any logical function. Also remove inverters connected to single external inputs and complement the corresponding input variable

$$
\text { Boolean Expression }=A \cdot \bar{B}+C \cdot(A+B \cdot D)
$$

(a) Step 1: AND/OR implementation

Jmplementing aboolean Expressionwhin Only NAND Gates (Exancple)

(Continued from previous slide..)

(b) Step 2: Substituting equivalent NAND functions
(Continued on next slide)
(Continued from previous slide..)

(c) Step 3: NAND implementation.

Universal Nom Gate

B NOR gate is an universal gate, it is alone sufficient to implement any Boolean expression

B To understand this, consider:
B Basic logic gates (AND, OR, and NOT) are logically complete

B Sufficient to show that AND, OR, and NOT gates can be implemented with NOR gates

Inplementation of NOTS, OR and AND Gares by NOR Gates

(a) NOT gate implementation.

(b) OR gate implementation.

Insplenentation of NOT, OR and ANID GEres by

 NOR Gates(Continued from previous slide..)

Computier Fundamentals: Pradeep K. Sinha \& Priti Sinhar

Nethod of Jmplementing a B'oolean Expression with Only JOi Gates

Step 1: For the given algebraic expression, draw the logic diagram with AND, OR, and NOT gates. Assume that both the normal (A) and complement $(\overline{\mathrm{A}})$ inputs are available

Step 2: Draw a second logic diagram with equivalent NOR logic substituted for each AND, OR, and NOT gate

Step 3: Remove all parts of cascaded inverters from the diagram as double inversion does not perform any logical function. Also remove inverters connected to single external inputs and complement the corresponding input variable

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Jmplementing a Boolean Expressjonwicin OnJy

(Continued from previous slide..)
Boolean Expression $A \cdot \bar{B}+C \cdot(A+B \cdot D)$

(a) Step 1: AND/OR implementation.

Computer Fundamentals! Pradeep K. Sinha \& Priti Sinhar
Jmplementing a Boolean Expressjonnuin OnJy NOR GコLes (Exansples)
(Continued from previous slide..)

(c) Step 3: NOR implementation.

Exclusive-orsunction

$A \oplus B=A \cdot \bar{B}+\bar{A} \cdot B$

Also, $(A \oplus B) \oplus C=A \oplus(B \oplus C)=A \oplus B \oplus C$

Exclusive-orstunction (Truth foble)

(Continued from previous slide..)

Inputs		Output
A	B	$\mathrm{C}=\mathrm{A} \oplus \mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	0

$A \ddot{A} B=A \cdot B+\bar{A} \cdot \bar{B}$

Also, $(A \ddot{A} B) \hat{A}=A \ddot{A}(B \ddot{A} C)=A \ddot{A} B A ̈ C$

Eguivalence-rusction (fruthrable)

Inputs		Output
A	B	C = A Ä B
0	0	1
0	1	0
1	0	0
1	1	1

Steps in Designimg Gombinational Ciremits

1. State the given problem completely and exactly
2. Interpret the problem and determine the available input variables and required output variables
3. Assign a letter symbol to each input and output variables
4. Design the truth table that defines the required relations between inputs and outputs
5. Obtain the simplified Boolean function for each output
6. Draw the logic circuit diagram to implement the Boolean function

Designing a Comojnaijonal Circuis Example 1 - flajfradser Desjoss

Inputs		Outputs	
A	B	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$\left.\begin{array}{l}S=\bar{A} \cdot B+A \cdot \bar{B} \\ C=A \cdot B\end{array}\right\}$ Boolean functions for the two outputs.

Logic circuit diagram to implement the Boolean functions

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Designing a Combinational Circuit

Inputs			Outputs	
A	B	D	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Truth table for a full adder

Designing a Combinational Circuit

Example 2 - Full-Adder Design
(Continued from previous slide..)

Boolean functions for the two outputs:

$$
\begin{aligned}
S & =\bar{A} \cdot \bar{B} \cdot D+\bar{A} \cdot B \cdot \bar{D}+A \cdot \bar{B} \cdot \bar{D}+A \cdot B \cdot D \\
C & =\bar{A} \cdot B \cdot D+A \cdot \bar{B} \cdot D+A \cdot B \cdot \bar{D}+A \cdot B \cdot D \\
& =A \cdot B+A \cdot D+B \cdot D \quad(\text { when simplified })
\end{aligned}
$$

Compuier Fundamentals! Prodeep K. Sinha \&q Prifi Sinhar
Designing a Combjnational Circuis
Exanfple 2 - F!
(Continued from previous slide..)

(a) Logic circuit diagram for sums

Designing a Combinational Circuit Example 2 - Full-Adder Design

(Continued from previous slide..)

(b) Logic circuit diagram for carry
Ref. Page 95 Chapter 6: Boolean Algebra and Logic Circuits \quad Slide 77/78

B Absorption law
B AND gate
B Associative law
B Boolean algebra
B Boolean expression
B Boolean functions
B Boolean identities
B Canonical forms for Boolean functions
B Combination logic circuits
B Cumulative law
B Complement of a function
B Complementation
B De Morgan's law
B Distributive law
B Dual identities

B Equivalence function
B Exclusive-OR function
B Exhaustive enumeration method
B Half-adder
B Idempotent law
B Involution law
B Literal
B Logic circuits
B Logic gates
B Logical addition
B Logical multiplication
B Maxterms
B Minimization of Boolean
functions
B Minterms
B NAND gate

B NOT gate
B Operator precedence
B OR gate
B Parallel Binary Adder
B Perfect induction method
B Postulates of Boolean algebra
B Principle of duality
B Product-of-Sums expression
B Standard forms
B Sum-of Products expression
B Truth table
B Universal NAND gate
B Universal NOR gate

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
B Boolean algebra
B Fundamental concepts and basic laws of Boolean \qquad
B Boolean function and minimization
B Logic gates \qquad
B Logic circuits and Boolean expressions
B Combinational circuits and design

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Operator Precedence	
B Each operator has a precedence level B Higher the operator's precedence level, earlier it is evaluated B Expression is scanned from left to right B First, expressions enclosed within parentheses are evaluated B Then, all complement (NOT) operations are performed B Then, all ' \because (AND) operations are performed B Finally, all ' + ' (OR) operations are performed	
(Continued on next slide)	
Ref. Page 62	

\qquad
\qquad
B Expression is scanned from left to right
B First, expressions enclosed within parentheses are evaluated \qquad
Then, all complement (NOT) operations are performed
B Then, all '.' (AND) operations are performed
Finally, all ' + ' (OR) operations are performed
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Postulates of̉Boolean Algebra

Postulate 1:

(a) $A=0$, if and only if, A is not equal to 1
(b) $\mathrm{A}=1$, if and only if, A is not equal to 0

Postulate 2:
(a) $x+0=x$
(b) $x \cdot 1=x$

Postulate 3: Commutative Law
(a) $x+y=y+x$
\qquad
\qquad
\qquad
\qquad
(b) $x \cdot y=y \cdot x$
(Continued on next slide)
\qquad
\qquad
Ref. Page $62 \quad$ Chapter 6: Boolean Algebra and Logic Circuits \qquad

Postulates of Boolean Algebra
Postulate 4: Associative Law
(a) $x+(y+z)=(x+y)+z$ \qquad
(b) $x \cdot(y \cdot z)=(x \cdot y) \cdot z$

Postulate 5: Distributive Law
(a) $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
(b) $x+(y \cdot z)=(x+y) \cdot(x+z)$

Postulate 6:

(a) $x+\bar{x}=1$
(b) $x \cdot \bar{x}=0$

The Principle of Duality

There is a precise duality between the operators . (AND) and + (OR), and the digits 0 and 1 . \qquad
For example, in the table below, the second row is obtained from the first row and vice versa simply by interchanging ' + ' with '. and ' 0 ' with ' 1

	Column 1	Column 2	Column 3
Row 1	$1+1=1$	$1+0=0+1=1$	$0+0=0$
Row 2	$0 \cdot 0=0$	$0 \cdot 1=1 \cdot 0=0$	$1 \cdot 1=1$

Therefore, if a particular theorem is proved, its dual theorem automatically holds and need not be proved separately

Sr. No.	Theorems/ Identities	Dual Theorems/ Identities	Name (if any)
1	$x+x=x$	$x \cdot x=x$	Idempotent Law
2	$x+1=1$	$x \cdot 0=0$	Absorption Law
3	$x+x \cdot y=x$	$x \cdot x+y=x$	Involution Law
4	$\overline{\bar{x}}=x$		
5	$x \cdot \bar{x}+y=x \cdot y$	$x+\bar{x} \cdot y=x+y$	De Morgan's Law
6	$\overline{x+y}=\bar{x} \bar{y} \cdot$	$\overline{x \cdot y}=\bar{x} \bar{y}+$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Methods of proving liteorens

The theorems of Boolean algebra may be proved by using one of the following methods: \qquad

1. By using postulates to show that L.H.S. $=$ R.H.S \qquad
2. By Perfect Induction or Exhaustive Enumeration method
where all possible combinations of variables involved in L.H.S. and R.H.S. are checked to yield identical results \qquad
3. By the Principle of Duality where the dual of an already proved theorem is derived from the proof of its corresponding pair \qquad
\qquad
Ref Page $63 \quad$ Chanter 6: Boolean Algebra and Logic Circuits \qquad
proving a theorem by Using postulates
(Example)
Theorem:

$$
x+x \cdot y=x
$$

\qquad

Proof: \qquad
L.H.S.
$=x+x \cdot y$
by postulate 2(b) \qquad
$=x \cdot 1+x \cdot y$ by postulate $5(a)$
$\begin{array}{ll}=x \cdot(1+y) & \\ =x \cdot(y+1) & \\ =x \cdot \text { by postulate } 3(a)\end{array}$
$=x \cdot 1 \quad$ by theorem 2(a)
$=x \quad$ by postulate $2(b)$
R H S
\qquad
Theorem:
$x+x \cdot y=x$

- =

x	y	$\mathbf{x} \cdot \mathbf{y}$	$\mathbf{x}+\mathbf{x} \cdot \mathbf{y}$
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
$=x+x$
$=(x+x) \cdot 1 \quad$ by postulate $2(b)$
$=(x+x) \cdot(x+\bar{x}) \quad$ by postulate $6(a)$ \qquad
$=x+0 \quad$ by postulate $6(b)$
$=\mathrm{x}$ by postulate $2(\mathrm{a})$ \qquad
\qquad

Ref. Page $63 \quad$ Chapter 6: Boolean Algebra and Logic Circuits \quad Slide 14/78 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
Variable W is a function of X, Y, and Z, can also be written as $W=f(X, Y, Z)$
B The RHS of the equation is called an expression
\qquad
B The symbols X, Y, Z are the literals of the function
For a given Boolean function, there may be more than
\qquad one algebraic expressions

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

リJnjujzation of Booleas fusfcions

B Minimization of Boolean functions deals with
B Reduction in number of literals
B Reduction in number of terms

B Minimization is achieved through manipulating expression to obtain equal and simpler expression(s) (having fewer literals and/or terms)

Minjojzaiton of Boolean functions

$F_{1}=\bar{x} \cdot \bar{y} \cdot z+\bar{x} \cdot y \cdot z+x \cdot \bar{y}$
F_{1} has 3 literals (x, y, z) and 3 terms
$F_{2}=x \cdot \bar{y}+\bar{x} \cdot z$
F_{2} has 3 literals ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) and 2 terms
F_{2} can be realized with fewer electronic components, resulting in a cheaper circuit
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Try out some boolean Function
Minimization
(a) $\bar{x}+\bar{x} \cdot y$
(b) $x \cdot(\bar{x}+y)$
(c) $\bar{x} \cdot \bar{y} \cdot z+\bar{x} \cdot y \cdot z+x \cdot \bar{y}$
(d) $x \cdot y+\bar{x} \cdot z+y \cdot z$
(e) $(x+y) \cdot(\bar{x}+z) \cdot(y+z)$

[^2]$F_{1}=\bar{x} \cdot y \cdot \bar{z}+\bar{x} \cdot \bar{y} \cdot z$
To obtain \bar{F}_{1}, we first interchange the OR and the AND operators giving
$$
(\bar{x}+y+\bar{z}) \cdot(\bar{x}+\bar{y}+z)
$$
Now we complement each literal giving
$\overline{F_{1}}=(x+\bar{y}+z) \cdot(x+y+\bar{z})$ \qquad
\qquad
Ref. Page 71
Chapter 6: Boolean Algebra and Logic Circuits \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mjnternss and yaxaternss for insee V/arjables						
	Variables		Minterms		Maxterms	
\times	y	z	Term	Designation	Term	Designation
0	0	0	$\overline{\mathrm{x}} \cdot \overline{\mathrm{y}} \cdot \overline{\mathrm{z}}$	mo	$x+y+z$	M
0	0	1	$\bar{x} \cdot \bar{y} \cdot z$	m_{1}	$x+y+z$	M_{1}
0	1	0	$\bar{x} \cdot \mathrm{y} \cdot \overline{\mathrm{z}}$	m_{2}	$x+\bar{y}+z$	M_{2}
0	1	1	$\overline{\mathrm{x}} \cdot \mathrm{y} \cdot \mathrm{z}$	m_{3}	$x+\bar{y}+\bar{z}$	M_{3}
1	0	0	$\mathrm{x} \cdot \overline{\mathrm{y}} \cdot \overline{\mathrm{z}}$	m_{4}	$\bar{x}+y+z$	M_{4}
1	0	1	$\mathrm{x} \cdot \overline{\mathrm{y}} \cdot \mathrm{z}$	m_{5}	$\overline{\mathrm{x}}+\mathrm{y}+\overline{\mathrm{z}}$	M ${ }_{5}$
1	1	0	$\mathrm{x} \cdot \mathrm{y} \cdot \overline{\mathrm{z}}$	m_{6}	$\bar{x}+\bar{y}+z$	M_{6}
1	1	1	$\mathrm{X} \cdot \mathrm{y} \cdot \mathrm{z}$	m_{7}	$\bar{x}+\bar{y}+\bar{z}$	M_{7}
Note that each minterm is the complement of its corresponding maxterm and vice-versa						
Ref. Page 71			Chapter 6: Boolean Algebra and Logic Circuits			Slide 2

Sunn-of-products (รOp) Expressjon

A sum-of-products (SOP) expression is a product term (minterm) or several product terms (minterms) logically added (ORed) together. Examples are:

$$
\begin{array}{ll}
x & x+y \\
x+y \cdot z & x \cdot y+z \\
x \cdot \bar{y}+\bar{x} \cdot y & \bar{x} \cdot \bar{y}+x \cdot \bar{y} \cdot z
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Steps to Express a Bioolean Finsction
in fis Sunn-oif- Producte form \qquad

1. Construct a truth table for the given Boolean function
\qquad
2. Form a minterm for each combination of the variables, which produces a 1 in the function \qquad
3. The desired expression is the sum (OR) of all the minterms obtained in Step 2 \qquad
\qquad
\qquad

\qquad

Expressing a function in jis

B Their corresponding minterms are:
$\bar{x} \cdot \bar{y} \cdot z, \quad x \cdot \bar{y} \cdot \bar{z}, \quad$ and $\quad x \cdot y \cdot z$
B Taking the OR of these minterms, we get
$F_{1}=\bar{x} \cdot \bar{y} \cdot z+x \cdot \bar{y} \cdot \bar{z}+x \cdot y \cdot z=m_{1}+m_{4}+m_{7}$
$F_{1}(x \cdot y \cdot z)=\sum(1,4,7)$
Product-of Suns (POS) Expresjion
A product-of-sums (POS) expression is a sum term (maxterm) or several sum terms (maxterms) logically multiplied (ANDed) together. Examples are:

$$
\begin{array}{ll}
x & (x+\bar{y}) \cdot(\bar{x}+y) \cdot(\bar{x}+\bar{y}) \\
\bar{x}+y & (x+y) \cdot(\bar{x}+y+z) \\
(\bar{x}+\bar{y}) \cdot z & (\bar{x}+y) \cdot(x+\bar{y})
\end{array}
$$

\qquad

Steps to Express a Boolean Function
1. Construct a truth table for the given Boolean function 2. Form a maxterm for each combination of the variables, which produces a 0 in the function 3. The desired expression is the product (AND) of all the maxterms obtained in Step 2

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Expressing a Function in fis

Product－of－5uns form

B Their corresponding maxterms are
$(x+y+z),(x+\bar{y}+z),(x+\bar{y}+\bar{z})$,
$(\bar{x}+y+\bar{z})$ and $(\bar{x}+\bar{y}+z)$
\qquad

Taking the AND of these maxterms，we get：
$F_{1}=(x+y+z) \cdot(x+\bar{y}+z) \cdot(x+\bar{y}+\bar{z}) \cdot(\bar{x}+y+\bar{z})$.
$(\bar{x}+\bar{y}+z)=M_{0} \cdot M_{2} \cdot M_{3} \cdot M_{5} \cdot M_{6}$
$F_{1}(x, y, z)=\Pi(0,2,3,5,6)$ \qquad

Conversion bebween Canonical forms（Sinn－of Products and Prod山ct－oテ－ラฟ Mns）

To convert from one canonical form to another， interchange the symbol and list those numbers missing from the original form． \qquad

Example：

$$
\begin{aligned}
& F(x, y, z)=\Pi(0,2,4,5)=\Sigma(1,3,6,7) \\
& F(x, y, z)=\Pi(1,4,7)=\Sigma(0,2,3,5,6)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
AS Physical realization of logical multiplication (AND)
operation

B | Generates an output signal of 1 only if all input |
| :--- |
| signals are also 1 |

Ref. Page $77 \quad$ Chapter 6: Boolean Algebra and Logic Circuits
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

| Ref. Page 78 | Chapter 6: Boolean Algebra and Logic Circuits | Slide 41/78 |
| :--- | :--- | :--- | :--- | :--- |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
B When logic gates are interconnected to form a gating /
logic network, it is known as a combinational logic circuit
B The Boolean algebra expression for a given logic circuit
can be derived by systematically progressing from input
to output on the gates
B The three logic gates (AND, OR, and NOT) are logically
complete because any Boolean expression can be
realized as a logic circuit using only these three gates

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Ref. Page 81	Chapter 6: Boolean Algebra and Logic Circuits	Slide 50/78

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Constructing Logic Circuit from abool ean Expression (Example 1)

Boolean Expression $=A \cdot B+C$ \qquad
C A
\qquad
Boolean Expression $=\overline{\mathrm{A} \cdot \mathrm{B}}+\mathrm{C} \cdot \mathrm{D}+\overline{\mathrm{E} \cdot \mathrm{F}}$

Ref. Page 83
Chapter 6: Boolean Algebra and Logic Circuits
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

UnJVersal vand Gaie

B NAND gate is an universal gate, it is alone sufficient to implement any Boolean expression
B To understand this, consider:
B Basic logic gates (AND, OR, and NOT) are logically complete \qquad
B Sufficient to show that AND, OR, and NOT gates can be implemented with NAND \qquad gates

Inplementation of NOT, AND ans OR Gates by

 NAMJD Gares
(b) AND gate implementation. \qquad
(Continued on next sidid)

[^3]
\qquad
\qquad

\qquad
\qquad diagram with AND, OR, and NOT gates. Assume that
\qquad
Draw a second logic diagram with the equivalent NAND gical single external inputs and complement the
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Universallor Gate

B NOR gate is an universal gate, it is alone sufficient to implement any Boolean expression \qquad
B To understand this, consider:
B Basic logic gates (AND, OR, and NOT) are logically complete

B Sufficient to show that AND, OR, and NOT gates can \qquad be implemented with NOR gates
\qquad
\qquad
Ref. Page 89 Chanter 6: Bocten
\qquad

Implementation of NOT, OR and AND Gares by NOR Gates

(a) NOT gate implementation.

(b) OR gate implementation.
(Continued on next slide)
Ref. Page 89
-2
-
Slide 61/78
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Implementaton of NOT, OR ヨnd AND Gコres by NOR Gates

(c) AND gate implementation.

Method of Implementing a Boolean Expression

 yuth Only No: Gates \qquadStep 1: For the given algebraic expression, draw the logic diagram with AND, OR, and NOT gates. Assume that both the normal (A) and complement (\bar{A}) inputs are available

Step 2: Draw a second logic diagram with equivalent NOR logic substituted for each AND, OR, and NOT gate

Step 3: Remove all parts of cascaded inverters from the diagram as double inversion does not perform any logical function. Also remove inverters connected to single external inputs and complement the corresponding input variable

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
NOR Gates (Exarnples)

(b) Step 2: Substituting equivalent NOR functions.
Sminedon onex stide)
Ref. Page $90 \quad$ Chapter 6: Boolean Algebra and Logic Circuits \quad Slide 65/78
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
B-C=A \oplus B=\bar{A} \cdot B+A \cdot \bar{B}
$$

$$
\mathrm{A} \longrightarrow \mathrm{C}=\mathrm{A} \oplus \mathrm{~B}=\overline{\mathrm{A}} \cdot \mathrm{~B}+\mathrm{A} \cdot \overline{\mathrm{~B}}
$$

Also, $(A \oplus B) \oplus C=A \oplus(B \oplus C)=A \oplus B \oplus C$
(Continued on next slide)
Ref. Page 91
Chapter 6: Boolean Algebra and Logic Circuits
Slide $67 / 78$
\qquad
\qquad
\qquad
Ref. Page $92 \quad$ Chapter 6: Boolean Algebra and Logic Circuits
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Eguivalence Function with Block Diagram
Symbol
$A \ddot{A} B=A \cdot B+\bar{A} \cdot \bar{B}$

Also, $\left(\begin{array}{ll}A \ddot{A} B\end{array}\right) \ddot{A}=A \ddot{A}(B \ddot{A} C)=A \ddot{A} B \ddot{A} C$
(Continued on next slide) Chapter 6: Boolean Algebra and Logic Circuits Slide 69/78 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Steps is Desighjag Consbisajelosja Ciscljes

1. State the given problem completely and exactly
2. Interpret the problem and determine the available input
variables and required output variables
3. Assign a letter symbol to each input and output variables
4. Design the truth table that defines the required relations
between inputs and outputs
5. Obtain the simplified Boolean function for each output
6. Draw the logic circuit diagram to implement the Boolean
function
Ref. Page 93
\qquad
\qquad
Interpret the problem and determine the available input

Assign a letter symbol to each input and output variables \qquad
Design the truth table that defines the required relations between inputs and outputs \qquad
5. Obtain the simplified Boolean function for each output
\qquad
Draw the logic circuit diagram to implement the Boolean

Ref. Page 9 Chapter
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Designing a Gombinational Circuit
Example 2 - Full-Adder Design \qquad

Inputs			Outputs	
A	B	D	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Truth table for a full adder
(Continued on next slide)

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Key Words/Rhsases

B Absorption law	B Equivalence function	B NOT gate
B AND gate	B Exclusive-OR function	B Operator precedence
B Associative law	B Exhaustive enumeration	B OR gate
B Boolean algebra	method	B Parallel Binary Adder
B Boolean expression	B Half-adder	B Perfect induction
B Boolean functions	B Idempotent law	method
B Boolean identities	B Involution law	B Postulates of Boolean
B Canonical forms for	B Literal	algebra
Boolean functions	B Logic circuits	B Principle of duality
B Combination logic	B Logic gates	B Product-of-Sums
circuits	B Logical addition	expression
B Cumulative law	B Logical multiplication	B Standard forms
B Complement of a	B Maxterms	B Sum-of Products
function	B Minimization of Boolean	expression
B Complementation	functions	B Truth table
B De Morgan's law	B Minterms	B Universal NAND gate
B Distributive law	B NAND gate	B Universal NOR gate
B Dual identities		
Ref. Page 97		

Chapter 07

Processor and Memory

Computer Fundamentals - Pradeep K. Sinha \& Priti Sinha

Learning Objectives

In this chapter you will learn about:

B Internal structure of processor
B Memory structure
B Determining the speed of a processor
B Different types of processors available
B Determining the capacity of a memory
B Different types of memory available
B Several other terms related to the processor and main memory of a computer system

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha..
Basje processor d juenory Architecture

Central Processing Unit (Cpy)

B The brain of a computer system
B Performs all major calculations and comparisons
B Activates and controls the operations of other units of a computer system
B Two basic components are
B Control Unit (CU)
B Arithmetic Logic Unit (ALU)
B No other single component of a computer determines its overall performance as much as the CPU

Control Unit (CU)

B One of the two basic components of CPU
B Acts as the central nervous system of a computer system
B Selects and interprets program instructions, and coordinates execution
B Has some special purpose registers and a decoder to perform these activities

Arithnoctic Eogic Unit (ALU)

B One of the two basic components of CPU.
B Actual execution of instructions takes place in ALU
B Has some special purpose registers
B Has necessary circuitry to carry out all the arithmetic and logic operations included in the CPU instruction set

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Instuction Set

B CPU has built-in ability to execute a particular set of machine instructions, called its instruction set
B Most CPUs have 200 or more instructions (such as add, subtract, compare, etc.) in their instruction set
B CPUs made by different manufacturers have different instruction sets

B Manufacturers tend to group their CPUs into "families" having similar instruction sets

B New CPU whose instruction set includes instruction set of its predecessor CPU is said to be backward compatible with its predecessor

Registers

B Special memory units, called registers, are used to hold information on a temporary basis as the instructions are interpreted and executed by the CPU
B Registers are part of the CPU (not main memory) of a computer
is The length of a register, sometimes called its word size, equals the number of bits it can store
B With all other parameters being the same, a CPU with 32-bit registers can process data twice larger than one with 16 -bit registers

Functions of Commonly Vsed Registers

Sr. No.	Name of Register	Function
1	Memory Address (MAR)	Holds address of the active memory location
2	Memory Buffer (MBR)	Holds contents of the accessed (read/written) memory word
3	Program Control (PC)	Holds address of the next instruction to be executed
4	Accumulator (A)	Holds data to be operated upon, intermediate results, and the results
5	Instruction (I)	Holds an instruction while it is being executed
6	Input/Output (I/O)	Used to communicate with the I/O devices

processor speed

B Computer has a built-in system clock that emits millions of regularly spaced electric pulses per second (known as clock cycles)
B It takes one cycle to perform a basic operation, such as moving a byte of data from one memory location to another
B Normally, several clock cycles are required to fetch, decode, and execute a single program instruction
B Hence, shorter the clock cycle, faster the processor
B Clock speed (number of clock cycles per second) is measured in Megahertz (10^{6} cycles/sec) or Gigahertz (10^{9} cycles/sec)

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Types of prosessor

$\begin{array}{c}\text { Type of } \\ \text { Architecture }\end{array}$	Features	Usage
CISC (Complex	$\begin{array}{l}\text { B Large instruction set } \\ \text { B Variable-length instructions } \\ \text { Instruction Set } \\ \text { Computer) }\end{array}$	$\begin{array}{l}\text { B Variety of addressing modes } \\ \text { B Complex \& expensive to } \\ \text { produce }\end{array}$

personal

computers\end{array}\right]\)| RISC (Reduced |
| :--- |
| Instruction Set |
| Computer) | | B Fixed-length instructions |
| :--- |
| B Reduced references to |
| memory to retrieve operands |\quad| Mostly used in |
| :--- |
| workstations |

Types of prosessor

(Continued from previous slide..)

Type of Architecture	Features	Usage
	B Allows software to communicate explicitly to the processor when operations are parallel	
EPIC (Explicitly Instruction	B Uses tighter coupling between the compiler and the processor	Mostly used in high-end servers and workstations
Bomputing)	Enables compiler to extract maximum parallelism in the original code, and explicitly describe it to the processor	

Types of prosessor

(Continued from previous slide..)

Type of Architecture	Features	Usage
	B Processor chip has multiple cooler-running, more energy- efficient processing cores	
Multi-Core Processor	Improve overall performance by handling more work in parallel	Mostly used in high-end servers and workstations
	B can share architectural components, such as memory elements and memory management	

Majan menory

ß Every computer has a temporary storage built into the computer hardware
ß It stores instructions and data of a program mainly when the program is being executed by the CPU.
$ß$ This temporary storage is known as main memory, primary storage, or simply memory.
B Physically, it consists of some chips either on the motherboard or on a small circuit board attached to the motherboard of a computer
B It has random access property.
B It is volatile.

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Stiorage Evaluation Criteria

Property	Desirable	Primary storage	Secondary storage
Storage capacity	Large storage capacity	Small	Large
Access Time	Fast access time	Fast	Slow
Cost per bit of storage	Lower cost per bit	High	Low
Volatility	Non-volatile	Volatile	Non-volatile
Access	Random access	Random access	Pseudo- random access or sequential access

M上j」 Mensonvorganjzaijos

(Continued on next slide)

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

(Continued from previous slide..)
B Machines having smaller word-length are slower in operation than machines having larger word-length

B A write to a memory location is destructive to its previous contents

B A read from a memory location is non-destructive to its previous contents

Fixed Wordjength venaory

B Storage space is always allocated in multiples of word-length
B Faster in speed of calculation than variable word-length memory
ß Normally used in large scientific computers for gaining speed of calculation
Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Variable Mord-Jengin ylemery

Note: With memory becoming cheaper and larger day-by-day, most modern computers employ fixed-word-length memory organization

Memory Capacjey

B Memory capacity of a computer is equal to the number of bytes that can be stored in its primary storage

B Its units are:

$$
\begin{array}{ll}
\text { Kilobytes (KB) } & : 1024\left(2^{10}\right) \text { bytes } \\
\text { Megabytes (MB) } & : 1,048,576\left(2^{20}\right) \text { bytes }
\end{array}
$$

Gigabytes (GB) : 1,073,741824 (230) bytes

Randons Access Menory (mANA)

B Primary storage of a computer is often referred to as RAM because of its random access capability

B RAM chips are volatile memory
B A computer's motherboard is designed in a manner that the memory capacity can be enhanced by adding more memory chips
B The additional RAM chips, which plug into special sockets on the motherboard, are known as single-in-line memory modules (SIMMs)

Read Only yernory (BOMJ)

B ROM a non-volatile memory chip
B Data stored in a ROM can only be read and used - they cannot be changed
B ROMs are mainly used to store programs and data, which do not change and are frequently used. For example, system boot program

Types off ROMJs

Type	Usage
Manufacturer-programmed ROM	Data is burnt by the manufacturer of the electronic equipment in which it is used.
User-programmed ROM or Programmable ROM (PROM)	The user can load and store "read-only" programs and data in it
Erasable PROM (EPROM)	The user can erase information stored in it and the chip can be reprogrammed to store new information

(Continued on next slide)

Types of foms

(Continued from previous slide..)

Type	Usage
Ultra Violet EPROM (UVEPROM)	A type of EPROM chip in which the stored information is erased by exposing the chip for some time to ultra-violet light
Electrically EPROM (EEPROM) or Flash memory	A type of EPROM chip in which the stored information is erased by using high voltage electric pulses

Cache yemory

\mathcal{B} It is commonly used for minimizing the memoryprocessor speed mismatch.
$ß$ It is an extremely fast, small memory between CPU and main memory whose access time is closer to the processing speed of the CPU.
ß It is used to temporarily store very active data and instructions during processing.

Cache is pronounced as "cash"

Key Words/ Phrases

B Accumulator Register (AR)
B Address
B Arithmetic Logic Unit (ALU)
B Branch Instruction
B Cache Memory
B Central Processing Unit (CPU)
B CISC (Complex Instruction Set Computer) architecture
B Clock cycles
B Clock speed
B Control Unit
B Electrically EPROM (EEPROM)
B Erasable Programmable ReadOnly Memory (EPROM)
B Explicitly Parallel Instruction Computing (EPIC)
B Fixed-word-length memory

B Flash Memory
B Input/Output Register (I/O)
B Instruction Register (I)
B Instruction set
B Kilobytes (KB)
B Main Memory
B Manufacturer-Programmed ROM
B Megabytes (MB)
B Memory
B Memory Address Register (MAR)
B Memory Buffer Register (MBR)
B Microprogram
B Multi-core processor
B Non-Volatile storage Processor
B Program Control Register (PC)
B Programmable Read-Only Memory (PROM)
B Random Access Memory (RAM)

Key Words/ Phiases

(Continued from previous slide..)
ß Read-Only Memory (ROM)
B Register
B RISC (Reduced Instruction Set Computer) architecture
B Single In-line Memory Module (SIMM)
B Ultra Violet EPROM (UVEPROM)
B Upward compatible
B User-Programmed ROM
B Variable-word-length memory
B Volatile Storage
B Word length
B Word size

Chapter 07

Processor and Memory

Computer Fundomentals - Pradeep K. Sinho \& Pirili Sinha

Learning Objectives

In this chapter you will learn about:

B Internal structure of processor
B Memory structure
B Determining the speed of a processor
B Different types of processors available
B Determining the capacity of a memory
B Different types of memory available
B Several other terms related to the processor and main memory of a computer system

Central Processing Unit (CPV)

B The brain of a computer system
B Performs all major calculations and comparisons
B Activates and controls the operations of other units of a computer system
B Two basic components are
B Control Unit (CU)
B Arithmetic Logic Unit (ALU)
B No other single component of a computer determines its overall performance as much as the CPU

Control Unti (CU)

B One of the two basic components of CPU
B Acts as the central nervous system of a computer system
B Selects and interprets program instructions, and coordinates execution
B Has some special purpose registers and a decoder to perform these activities

Arithastic bogic Unit (ADV)

B One of the two basic components of CPU.
B Actual execution of instructions takes place in ALU
B Has some special purpose registers
B Has necessary circuitry to carry out all the arithmetic and logic operations included in the CPU instruction set

Instructionset
is CPU has built-in ability to execute a particular set of machine instructions, called its instruction set
B Most CPUs have 200 or more instructions (such as add, subtract, compare, etc.) in their instruction set
B CPUs made by different manufacturers have different instruction sets
B Manufacturers tend to group their CPUs into "families" having similar instruction sets

B New CPU whose instruction set includes instruction set of its predecessor CPU is said to be backward compatible with its predecessor

B Special memory units, called registers, are used to hold information on a temporary basis as the instructions are interpreted and executed by the CPU
B Registers are part of the CPU (not main memory) of a computer
B The length of a register, sometimes called its word size, equals the number of bits it can store

B With all other parameters being the same, a CPU with 32-bit registers can process data twice larger than one with 16-bit registers

Computer Fundamentals! Pradeep K. Sinha \& Prifi Sinhan
Functions of commondy Used fegisters

Sr. No.	Name of Register	Function
1	Memory Address (MAR)	Holds address of the active memory location
2	Memory Buffer (MBR)	Holds contents of the accessed (read/written) memory word
3	Program Control (PC)	Holds address of the next instruction to be executed
4	Accumulator (A)	Holds data to be operated upon, intermediate results, and the results
5	Instruction (I)	Holds an instruction while it is being executed
6	Input/Output (I/O)	Used to communicate with the I/O devices

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Processor speed

B Computer has a built-in system clock that emits millions of regularly spaced electric pulses per second (known as clock cycles)
B It takes one cycle to perform a basic operation, such as moving a byte of data from one memory location to another
B Normally, several clock cycles are required to fetch, decode, and execute a single program instruction
B Hence, shorter the clock cycle, faster the processor
B Clock speed (number of clock cycles per second) is measured in Megahertz (10^{6} cycles/sec) or Gigahertz (10^{9} cycles/sec)

Computer Fundamentals: Pradeep K. Sinha \& Prifi Sinha
 Types of Prosessor

(Continued from previous slide..)

Type of Architecture	Features	Usage
	B Processor chip has multiple cooler-running, more energy- efficient processing cores	
Multi-Core Processor	Improve overall performance by handling more work in parallel	Mostly used in high-end servers and workstations
	B can share architectural components, such as memory elements and memory management	

B Every computer has a temporary storage built into the computer hardware

B It stores instructions and data of a program mainly when the program is being executed by the CPU.

B This temporary storage is known as main memory, primary storage, or simply memory.
B Physically, it consists of some chips either on the motherboard or on a small circuit board attached to the motherboard of a computer

B It has random access property.
B It is volatile.

Stiorage Evaluation Criterija

Property	Desirable	Primary storage	Secondary storage
Storage capacity	Large storage capacity	Small	Large
Access Time	Fast access time	Fast	Slow
Cost per bit of storage	Lower cost per bit	High	Low
Volatility	Non-volatile	Volatile	Non-volatile
Access	Random access	Random access	Pseudo- random access or sequential access

Majn Menory Organjeation

Maja Memory Organjoation

(Continued from previous slide..)
B Machines having smaller word-length are slower in operation than machines having larger word-length
B A write to a memory location is destructive to its previous contents
B A read from a memory location is non-destructive to its previous contents

Flxed Wordjengith Dlensory

B Storage space is always allocated in multiples of word-length
B Faster in speed of calculation than variable word-length memory
B Normally used in large scientific computers for gaining speed of calculation

Computer Fundamentals! Pradeep K. Sinha \&s Priti Sinhar

Nemory Capacjey

B Memory capacity of a computer is equal to the number of bytes that can be stored in its primary storage

B Its units are:
Kilobytes (KB) : $1024\left(2^{10}\right)$ bytes
Megabytes (MB) : 1,048,576 (20) bytes
Gigabytes (GB) : 1,073,741824 (2^{30}) bytes

Randons Access Memory (RAMy)

B Primary storage of a computer is often referred to as RAM because of its random access capability

B RAM chips are volatile memory
B A computer's motherboard is designed in a manner that the memory capacity can be enhanced by adding more memory chips
B The additional RAM chips, which plug into special sockets on the motherboard, are known as single-in-line memory modules (SIMMs)

Read Only yenory (ROMJ)

B ROM a non-volatile memory chip
B Data stored in a ROM can only be read and used - they cannot be changed
is ROMs are mainly used to store programs and data, which do not change and are frequently used. For example, system boot program

なypes of rionjs	
Type	Usage
Manufacturer-programmed ROM	Data is burnt by the manufacturer of the electronic equipment in which it is used.
User- programmed ROM or Programmable ROM (PROM)	The user can load and store "read-only" programs and data in it
Erasable PROM (EPROM)	The user can erase information stored in it and the chip can be reprogrammed to store new information
(Continued on next slide)	
Cran	ST
Ref Page 112 Chapter 7: Processor and Memory Slide 23/27	

Type	Usage
Ultra Violet EPROM (UVEPROM)	A type of EPROM chip in which the stored information is erased by exposing the chip for some time previous side..) to ultra-violet light
Electrically EPROM (EEPROM) or	A type of EPROM chip in which the stored information is erased by using high voltage electric pulses
Flash memory	

Cache Memory
B It is commonly used for minimizing the memoryprocessor speed mismatch.
B It is an extremely fast, small memory between CPU and main memory whose access time is closer to the processing speed of the CPU.
B It is used to temporarily store very active data and instructions during processing.

Cache is pronounced as "cash"

(Continued from previous slide..) B Read-Only Memory (ROM) B Register B RISC (Reduced Instruction Set Computer) architecture B Single In-line Memory Module (SIMM) B Ultra Violet EPROM (UVEPROM) B Upward compatible B User-Programmed ROM B Variable-word-length memory B Volatile Storage B Word length B Word size		

\qquad
\qquad
\qquad

\qquad
In this chapter you will learn about:

B Internal structure of processor
B Memory structure \qquad
B Determining the speed of a processor
B Different types of processors available
B Determining the capacity of a memory
B Different types of memory available \qquad
B Several other terms related to the processor and
\qquad main memory of a computer system

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Registers

B Special memory units, called registers, are used to hold information on a temporary basis as the instructions are interpreted and executed by the CPU
B Registers are part of the CPU (not main memory) of a computer
B The length of a register, sometimes called its word size, equals the number of bits it can store \qquad
B With all other parameters being the same, a CPU with 32 -bit registers can process data twice larger than one with 16 -bit registers
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- yoes 0j Processer			
(Continued from previous side..)			
Type of Architecture	Features	Usage	
EPIC (Explicitly Parallel Instruction Computing)	B Allows software to communicate explicitly to the processor when operations are parallel B Uses tighter coupling between the compiler and the processor B Enables compiler to extract maximum parallelism in the original code, and explicitly describe it to the processor	Mostly used in high-end servers and workstations	
(Continued on next slide)			
Ref Page 106	Chapter 7: Processor and Memory	Slide 12/27	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mana Memory

B Every computer has a temporary storage built into the computer hardware
B It stores instructions and data of a program mainly when the program is being executed by the CPU.
B This temporary storage is known as main memory, primary storage, or simply memory.
B Physically, it consists of some chips either on the motherboard or on a small circuit board attached to the motherboard of a computer
B It has random access property. \qquad
B It is volatile.

Storage Eyaluation Criterjar

Property	Desirable	Primary storage	Secondary storage
Storage capacity	Large storage capacity	Small	Large
Access Time	Fast access time	Fast	Slow
Cost per bit of storage	Lower cost per bit	High	Low
Volatility	Non-volatile	Volatile	Non-volatile
Access	Random access	Random access	Pseudo- random access or sequential access

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Nain Memory Organfoaton-

B Machines having smaller word-length are slower in operation than machines having larger word-length \qquad
B A write to a memory location is destructive to its previous contents
B A read from a memory location is non-destructive to its previous contents
\qquad
\qquad
\qquad
\qquad
Ref Page $110 \quad$ Chapter 7: Processor and Memory \quad Slide $17 / 27$
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

以リmory Capacjiy

B Memory capacity of a computer is equal to the number of bytes that can be stored in its primary storage \qquad
B Its units are:

Kilobytes (KB) $\quad: 1024\left(2^{10}\right)$ bytes	
Megabytes (MB) $\quad: 1,048,576\left(2^{20}\right)$ bytes	
Gigabytes (GB) $\quad: 1,073,741824\left(2^{30}\right)$ bytes	
Ref Page 111	Chapter 7: Processor and Memory

\qquad
\qquad
\qquad
\qquad
\qquad

B Primary storage of a computer is often referred to as RAM because of its random access capability \qquad
B RAM chips are volatile memory
B A computer's motherboard is designed in a manner that the memory capacity can be enhanced by adding more memory chips
\qquad

B The additional RAM chips, which plug into special sockets on the motherboard, are known as single-in-line memory modules (SIMMs)

Type	Usage
Manufacturer-programmed ROM Data is burnt by the manufacturer of the electronic equipment in which it is used. User-programmed ROM or Programmable ROM (PROM) The user can load and store "read-only" programs and data in it Erasable PROM (EPROM) The user can erase information stored in it and the chip can be reprogrammed to store new information Ref Page 112	
Chapter 7: Processor and Memory	

\qquad

Type	Usage
Ultra Violet EPROM (UVEPROM)	A type of EPROM chip in which the stored information is erased by exposing the chip for some time to ultra-violet light
Electrically EPROM (EEPROM) or	A type of EPROM chip in which the stored information is erased by using high voltage electric pulses
Flashemory	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Key Words/ Rhrases

B Read-Only Memory (ROM)
B Register
B RISC (Reduced Instruction Set Computer)
architecture
B Single In-line Memory Module (SIMM)
B Ultra Violet EPROM (UVEPROM)
B Upward compatible
B User-Programmed ROM
B Variable-word-length memory
B Volatile Storage
B Word length
B Word size
\qquad

Chapter 08

Secondary Storage Devices

Computer Fundamentals - Pradeep K. Sinha \& Priti Sinha

Learning Objectives

In this chapter you will learn about:

B Secondary storage devices and their need
B Classification of commonly used secondary storage devices

B Difference between sequential and direct access storage devices
B Basic principles of operation, types, and uses of popular secondary storage devices such as magnetic tape, magnetic disk, and optical disk

Learning Objectives

(Continued from previous slide..)
B Commonly used mass storage devices
B Introduction to other related concepts such as RAID, Jukebox, storage hierarchy, etc.

Luntotions of prinsary storage

B Limited capacity because the cost per bit of storage is high
B Volatile - data stored in it is lost when the electric power is turned off or interrupted

Secondary storage

B Used in a computer system to overcome the limitations of primary storage

B Has virtually unlimited capacity because the cost per bit of storage is very low
B Has an operating speed far slower than that of the primary storage

B Used to store large volumes of data on a permanent basis

B Also known as auxiliary memory

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Classification of Comnsonly Used Seconclary Siorage Devjces

Seguentiallaccess Sitorage Devices

B Arrival at the desired storage location may be preceded by sequencing through other locations
B Data can only be retrieved in the same sequence in which it is stored

B Access time varies according to the storage location of the information being accessed

B Suitable for sequential processing applications where most, if not all, of the data records need to be processed one after another

B Magnetic tape is a typical example of such a storage device

Directaccess sitorage Devices

ß Devices where any storage location may be selected and accessed at random
ß Permits access to individual information in a more direct or immediate manner

B Approximately equal access time is required for accessing information from any storage location

B Suitable for direct processing applications such as online ticket booking systems, on-line banking systems
ß Magnetic, optical, and magneto-optical disks are typical examples of such a storage device

Dagnetic 「ape Besjes

B Commonly used sequential-access secondary storage device

B Physically, the tape medium is a plastic ribbon, which is usually $1 / 2$ inch or $1 / 4$ inch wide and 50 to 2400 feet long
B Plastic ribbon is coated with a magnetizable recording material such as iron-oxide or chromium dioxide
B Data are recorded on the tape in the form of tiny invisible magnetized and non-magnetized spots (representing 1 s and 0 s) on its coated surface
B Tape ribbon is stored in reels or a small cartridge or cassette

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Nagnetic rape-Storage Organjzaijon (Exanple 1)

Illustrates the concepts of frames, tracks, parity bit, and character-by-character data storage

Computer Fundamentals：Pradeep K．Sinha \＆Priti Sinha

ウたgnetic 「ape－Stiorage Organjzacion（Exanaple 2）

Illustrates the concepts of frames，tracks，parity bit，and character－by－character data storage

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

| IBG | R1 | Tape motion |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(a) An unblocked tape. There is an IBG after each record.

Tape motion

IBG	R1	R2	IBG	R3	R4	IBG	R5	R6	IBG	R7	R8	IBG

(b) A tape which uses a blocking factor of two. There is an IBG after every two records.
\longleftarrow Tape motion

IBG	R1	R2	R3	IBG	R4	R5	R6	IBG	R7	R8	R9	IBG

(c) A tape which uses a blocking factor of three. There is an IBG after every three records.

Illustrates the concepts of blocking of records, inter-block gap (IBG), and blocking factor

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Nagnetic Tape - Storage Organterion (Example at

Illustrates the concepts of multiple blocks of records forming a file that is separated from other files by a file header label in the beginning and a file trailer label at the end of the file

Nagnetic なapeーS゙iorage Organjzajion（Exaunple 5）

Illustrates the concepts of Beginning of Tape（BoT）and End of Tape （EoT）markers，and tape header label

Magnetic fape Siorage Capardiy

B Storage capacity of a tape $=$ Data recording density x Length
B Data recording density is the amount of data that can be stored on a given length of tape. It is measured in bytes per inch (bpi)
B Tape density varies from 800 bpi in older systems to 77,000 bpi in some of the modern systems
B Actual storage capacity of a tape may be anywhere from 35% to 70% of its total storage capacity, depending on the storage organization used

Magnetc fape - Data ffansier fiace

B Refers to characters/second that can be transmitted to the memory from the tape
B Transfer rate measurement unit is bytes/second (bps)
\& Value depends on the data recording density and the speed with which the tape travels under the read/write head
ß A typical value of data transfer rate is $7.7 \mathrm{MB} /$ second

Magnetic Tape - Fape Djuve

B Used for writing/reading of data to/from a magnetic tape ribbon
B Different for tape reels, cartridges, and cassettes
B Has read/write heads for reading/writing of data on tape
B A magnetic tape reel/cartridge/cassette has to be first loaded on a tape drive for reading/writing of data on it
B When processing is complete, the tape is removed from the tape drive for off-line storage

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Magnetic Tape -rape Controller

B Tape drive is connected to and controlled by a tape controller that interprets the commands for operating the tape drive

B A typical set of commands supported by a tape controller are:

Read

Write

Write tape header label

Erase tape

Back space one block
reads one block of data writes one block of data used to update the contents of tape header label erases the data recorded on a tape rewinds the tape to the beginning of previous block

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

(Continued from previous slide..)
Forward space one block forwards the tape to the beginning of next block

Forward space one file

Rewind

Unload
forwards the tape to the beginning of next file
fully rewinds the tape
releases the tape drive's grip so that the tape spool can be unmountedfrom the tape drive

Jypes of Magretic Tape

B $1 / 2$-inch tape reel

B $1 / 2$-inch tape cartridge

B $1 / 4$-inch streamer tape

B 4-mm digital audio tape (DAT)

Hajfinch fape 及eel

B Uses $1 / 2$ inch wide tape ribbon stored on a tape reel
ß Uses parallel representation method of storing data, in which data are read/written a byte at a time
ß Uses a read/write head assembly that has one read/write head for each track
ß Commonly used as archival storage for off-line storage of data and for exchange of data and programs between organizations
ß Fast getting replaced by tape cartridge, streamer tape, and digital audio tape they are more compact, cheaper and easier to handle

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Hajfinch fape seel

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

なape Drive offanfinch Japer feel

Halifinchrape Cartidge

B Uses $1 / 2$ inch wide tape ribbon sealed in a cartridge
B Has 36 tracks, as opposed to 9 tracks for most half-inch tape reels
B Stores data using parallel representation. Hence, 4 bytes of data are stored across the width of the tape. This enables more bytes of data to be stored on the same length of tape
B Tape drive reads/writes on the top half of the tape in one direction and on the bottom half in the other direction

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Halfinch rope Cartridge

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Quarter-juch Streancer fape

B Uses $1 / 4$ inch wide tape ribbon sealed in a cartridge
B Uses serial representation of data recording (data bits are aligned in a row one after another in tracks)
B Can have from 4 to 30 tracks, depending on the tape drive

B Depending on the tape drive, the read/write head reads/writes data on one/two/four tracks at a time
B Eliminates the need for the start/stop operation of traditional tape drives

Quarter-juch Streancer fape

(Continued from previous slide..)
B Can read/write data more efficiently than the traditional tape drives because there is no start/stop mechanism

B Make more efficient utilization of tape storage area than traditional tape drives because IBGs are not needed

B The standard data formats used in these tapes is known as the QIC standard

Quarter-jnchsitreamer TEpe (Example)

SHM DigitarAuclio Tope (DAFr)

B Uses 4 mm wide tape ribbon sealed in a cartridge
B Has very high data recording density
B Uses a tape drive that uses helical scan technique for data recording, in which two read heads and two write heads are built into a small wheel
B DAT drives use a data recording format called Digital Data Storage (DDS), which provides three levels of error-correcting code
B Typical capacity of DAT cartridges varies from 4 GB to 14 GB

The felical Scan Technigues Used in DATJ Drives

Write head B

Adyantages of Magnetic Jojpes

B Storage capacity is virtually unlimited because as many tapes as required can be used for storing very large data sets

B Cost per bit of storage is very low for magnetic tapes.
B Tapes can be erased and reused many times
B Tape reels and cartridges are compact and light in weight

B Easy to handle and store.
B Very large amount of data can be stored in a small storage space

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Adyantages of Magnetic TEjpes

(Continued from previous slide..)
\& Compact size and light weight
ß Magnetic tape reels and cartridges are also easily portable from one place to another
$ß$ Often used for transferring data and programs from one computer to another that are not linked together

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Lnstations of Magnetic fapes

B Due to their sequential access nature, they are not suitable for storage of those data that frequently require to be accessed randomly

B Must be stored in a dust-free environment because specks of dust can cause tape-reading errors
B Must be stored in an environment with properly controlled temperature and humidity levels
B Tape ribbon may get twisted due to warping, resulting in loss of stored data

B Should be properly labeled so that some useful data stored on a particular tape is not erased by mistake

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Uses of yagnetic - - jpes

B For applications that are based on sequential data processing

B Backing up of data for off-line storage
B Archiving of infrequently used data
B Transferring of data from one computer to another that are not linked together
B As a distribution media for software by vendors

Magnetic Disk - Basics

B Commonly used direct-access secondary storage device.
B Physically, a magnetic disk is a thin, circular plate/platter made of metal or plastic that is usually coated on both sides with a magnetizable recording material such as iron-oxide

B Data are recorded on the disk in the form of tiny invisible magnetized and non-magnetized spots (representing 1 s and 0 s) on the coated surfaces of the disk

B The disk is stored in a specially designed protective envelope or cartridge, or several of them are stacked together in a sealed, contamination-free container

Nagnetic DjEk - Storage Organjeation JJusidates tide Concept of' Trackes

B A disk's surface is divided into a number of invisible concentric circles called tracks
\& The tracks are numbered consecutively from outermost to innermost starting from zero
B The number of tracks on a disk may be as few as 40 on small, low-capacity disks, to several thousand on large, high-capacity disks

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
Jagnetic Disk-5torage Organjajijos JJUsirates the Consepi of゙ ப゙ectors

B Each track of a disk is subdivided into sectors
\& There are 8 or more sectors per track

B A sector typically contains 512 bytes

B Disk drives are designed to read/write only whole sectors at a time

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha..
Magnetic Disk-5torage Organjzation

Illustrates Grouping of Tracks and Use of Different Number of Sectors in Tracks of Different Groups for I ncreased Storage Capacity

B Innermost group of tracks has 8 sectors/track

B Next groups of tracks has 9 sectors/track

B Outermost group of tracks has 10 sectors/track

DJagnetic Disk - Disk Address or Address of a Recored on e Disk

B Disk address represents the physical location of the record on the disk
B It is comprised of the sector number, track number, and surface number (when double-sided disks are used)

B This scheme is called the CHS addressing or Cylinder-Head-Sector addressing. The same is also referred to as disk geometry

Dagnetic Disk - Stiorage Organjeaijon (JJustiaies the Concepi of Cylincler)

No. of disk platters $=4$, No. of usable surfaces $=6$. A set of corresponding tracks on all the 6 surfaces is called a cylinder.

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Nagnetic Disk - Storage Capacicy

Storage capacity of a disk system = Number of recording surfaces \times Number of tracks per surface \times Number of sectors per track \times Number of bytes per sector

Nagnetic Djsk Pack - Access juechafivns

Direction of movement of access arms assembly

One read/write head per surface

Vertical cross section of a disk system. There is one read/write head per recording surface

Magnetic Disk - Access Tinse

B Disk access time is the interval between the instant a computer makes a request for transfer of data from a disk system to the primary storage and the instant this operation is completed

B Disk access time depends on the following three parameters:

- Seek Time: It is the time required to position the read/write head over the desired track, as soon as a read/write command is received by the disk unit
- Latency: It is the time required to spin the desired sector under the read/write head, once the read/write head is positioned on the desired track

Magnetic Disk - Access Jinse

- Transfer Rate: It is the rate at which data are read/written to the disk, once the read/write head is positioned over the desired sector

B As the transfer rate is negligible as compared to seek time and latency,

Average access time
$=$ Average seek time + Average latency

Disk formsiting

B Process of preparing a new disk by the computer system in which the disk is to be used.
B For this, a new (unformatted) disk is inserted in the disk drive of the computer system and the disk formatting command is initiated

B Low-level disk formatting
B Disk drive's read/write head lays down a magnetic pattern on the disk's surface
B Enables the disk drive to organize and store the data in the data organization defined for the disk drive of the computer

Disk formajting

(Continued from previous slide..)
B OS-level disk formatting
B Creates the File Allocation Table (FAT) that is a table with the sector and track locations of data

B Leaves sufficient space for FAT to grow
B Scans and marks bad sectors
B One of the basic tasks handled by the computer's operating system
B Enables the use of disks manufactured by third party vendors into one's own computer system

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Magnetic Disk - Disk Drive

B Unit used for reading/writing of data on/from a magnetic disk

B Contains all the mechanical, electrical and electronic components for holding one or more disks and for reading or writing of information on to it
Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Magnetic Disk - Disk Drive

(Continued from previous slide..)
B Although disk drives vary greatly in their shape, size and disk formatting pattern, they can be broadly classified into two types:

- Those with interchangeable magnetic disks, which allow the loading and unloading of magnetic disks as and when they are needed for reading/writing of data on to them
- Those with fixed magnetic disks, which come along with a set of permanently fixed disks. The disks are not removable from their disk drives
Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Magnetic Disk - Disk Controller

B Disk drive is connected to and controlled by a disk controller, which interprets the commands for operating the disk drive

B Typically supports only read and write commands, which need disk address (surface number, cylinder/track number, and sector number) as parameters
B Connected to and controls more than one disk drive, in which case the disk drive number is also needed as a parameters of read and write commands

『ypes of Magnetic Disks

Floppy Disks

B Round, flat piece of flexible plastic disks coated with magnetic oxide
B So called because they are made of flexible plastic plates which can bend

B Also known as floppies or diskettes
B Plastic disk is encased in a square plastic or vinyl jacket cover that gives handling protection to the disk surface

FJoppy Disks

(Continued from previous slide..)
ß The two types of floppy disks in use today are:
B 5¼-inch diskette, whose diameter is $51 / 4$-inch. It is encased in a square, flexible vinyl jacket

B $31 / 2$-inch diskette, whose diameter is $31 / 2$-inch. It is encased in a square, hard plastic jacket

B Most popular and inexpensive secondary storage medium used in small computers

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha
A 514-1nch 戶loppy Disk

A 5¼-inch floppy disk enclosed within jacket. The drive mechanism clamps on to a portion of the disk exposed by the drive access opening in the jacket

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.
A $31 / 2$-jnch 引joppy Disk

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Storage Capactijes of Various 「ypesor aloppy Disks

Size (Diameter in inches)	No. of surfaces	No. of tracks	No. of sectors/track	No. of bytes/ sector	Capacity in bytes	Approximate capacity
$51 / 4$	2	40	9	512	$3,68,640$	360 KB
$5^{1 / 4}$	2	80	15	512	$12,28,800$	1.2 MB
$3^{11 / 2}$	2	40	18	512	$7,37,280$	720 KB
$3^{11 / 2}$	2	80	18	512	$14,74,560$	1.4 MB
$3^{11 / 2}$	2	80	36	512	$29,49,120$	2.88 MB

Hard Disks

B Round, flat piece of rigid metal (frequently aluminium) disks coated with magnetic oxide
B Come in many sizes, ranging from 1 to 14 -inch diameter.
B Depending on how they are packaged, hard disks are of three types:
B Zip/Bernoulli disks
B Disk packs
B Winchester disks
B Primary on-line secondary storage device for most computer systems today

Zup/ Bersotnli Disks

ß Uses a single hard disk platter encased in a plastic cartridge
B Disk drives may be portable or fixed type
ß Fixed type is part of the computer system, permanently connected to it
ß Portable type can be carried to a computer system, connected to it for the duration of use, and then can be disconnected and taken away when the work is done
ß Zip disks can be easily inserted/removed from a zip drive just as we insert/remove floppy disks in a floppy disk drive

Disk Packe

B Uses multiple (two or more) hard disk platters mounted on a single central shaft
B Disk drives have a separate read/write head for each usable disk surface (the upper surface of the top-most disk and the lower surface of the bottom most disk is not used)
B Disks are of removable/interchangeable type in the sense that they have to be mounted on the disk drive before they can be used, and can be removed and kept off-line when not in use

Mnchester bisks

B Uses multiple (two or more) hard disk platters mounted on a single central shaft

B Hard disk platters and the disk drive are sealed together in a contamination-free container and cannot be separated from each other

Minchester Disks

(Continued from previous slide..)
B For the same number of disks, Winchester disks have larger storage capacity than disk packs because:

- All the surfaces of all disks are used for data recording

They employ much greater precision of data recording, resulting in greater data recording density

B Named after the .30-30 Winchester rifle because the early Winchester disk systems had two 30-MB disks sealed together with the disk drive

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Adyantages of Magnetic Disks

B More suitable than magnetic tapes for a wider range of applications because they support direct access of data

B Random access property enables them to be used simultaneously by multiple users as a shared device. A tape is not suitable for such type of usage due to its sequential-access property

B Suitable for both on-line and off-line storage of data

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

AdVantages of Magnetic Disks

(Continued from previous slide..)
B Except for the fixed type Winchester disks, the storage capacity of other magnetic disks is virtually unlimited as many disks can be used for storing very large data sets
B Due to their low cost and high data recording densities, the cost per bit of storage is low for magnetic disks.
B An additional cost benefit is that magnetic disks can be erased and reused many times
B Floppy disks and zip disks are compact and light in weight. Hence they are easy to handle and store.
B Very large amount of data can be stored in a small storage space

Advantages of Magnetic Dists

B Due to their compact size and light weight, floppy disks and zip disks are also easily portable from one place to another

B They are often used for transferring data and programs from one computer to another, which are not linked together
B Any information desired from a disk storage can be accessed in a few milliseconds because it is a direct access storage device

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

AdVantages of Magnetic Disks

(Continued from previous slide..)
B Data transfer rate for a magnetic disk system is normally higher than a tape system
B Magnetic disks are less vulnerable to data corruption due to careless handling or unfavorable temperature and humidity conditions than magnetic tapes

Lnsitatons of Magnetic Disks

B Although used for both random processing and sequential processing of data, for applications of the latter type, it may be less efficient than magnetic tapes

B More difficult to maintain the security of information stored on shared, on-line secondary storage devices, as compared to magnetic tapes or other types of magnetic disks

Linticions of Magnetic Disk

(Continued from previous slide..)
ß For Winchester disks, a disk crash or drive failure often results in loss of entire stored data. It is not easy to recover the lost data. Suitable backup procedures are suggested for data stored on Winchester disks
ß Some types of magnetic disks, such as disk packs and Winchester disks, are not so easily portable like magnetic tapes
ß On a cost-per-bit basis, the cost of magnetic disks is low, but the cost of magnetic tapes is even lower

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Lindeatons of vagnetic Disks

(Continued from previous slide..)
B Must be stored in a dust-free environment
ß Floppy disks, zip disks and disk packs should be labeled properly to prevent erasure of useful data by mistake

Uses of Mangetic Disks

B For applications that are based on random data processing
is As a shared on-line secondary storage device. Winchester disks and disk packs are often used for this purpose
B As a backup device for off-line storage of data. Floppy disks, zip disks, and disk packs are often used for this purpose

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Uses of Mangetic Disks

(Continued from previous slide..)
B Archiving of data not used frequently, but may be used once in a while. Floppy disks, zip disks, and disk packs are often used for this purpose
B Transferring of data and programs from one computer to another that are not linked together. Floppy disks and zip disks are often used for this purpose
B Distribution of software by vendors. Originally sold software or software updates are often distributed by vendors on floppy disks and zip disks

Optcal Disk - E'asics

B Consists of a circular disk, which is coated with a thin metal or some other material that is highly reflective
B Laser beam technology is used for recording/reading of data on the disk

B Also known as laser disk / optical laser disk, due to the use of laser beam technology
B Proved to be a promising random access medium for high capacity secondary storage because it can store extremely large amounts of data in a limited space

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

B Has one long spiral track, which starts at the outer edge and spirals inward to the center
B Track is divided into equal size sectors

(a) Track pattern on an optical disk

(b) Track pattern on a magnetic disk

Difference in track patterns on optical and magnetic disks.

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Optical Disk - Storage Capacjey

Storage capacity of an optical disk
$=$ Number of sectors
\times Number of bytes per sector

The most popular optical disk uses a disk of 5.25 inch diameter with storage capacity of around 650 Megabytes

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Optical Disk- Access Muechanisn

Opticallisk-Access 「1me

B With optical disks, each sector has the same length regardless of whether it is located near or away from the disk's center

B Rotation speed of the disk must vary inversely with the radius. Hence, optical disk drives use a constant linear velocity (CLV) encoding scheme
B Leads to slower data access time (Iarger access time) for optical disks than magnetic disks
B Access times for optical disks are typically in the range of 100 to 300 milliseconds and that of hard disks are in the range of 10 to 30 milliseconds

Optical Disk Drive

B Uses laser beam technology for reading/writing of data
B Has no mechanical read/write access arm
B Uses a constant linear velocity (CLV) encoding scheme, in which the rotational speed of the disk varies inversely with the radius

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Optical Disk Drive

Jypes of Optical-Disks

The types of optical disks in use today are:
CD-ROM
B Stands for Compact Disk-Read Only Memory
B Packaged as shiny, silver color metal disk of $51 / 4$ inch (12 cm) diameter, having a storage capacity of about 650 Megabytes
B Disks come pre-recorded and the information stored on them cannot be altered

B Pre-stamped (pre-recorded) by their suppliers, by a process called mastering

Computer Fundamentals:. Pradeep K. Sinha \& Priti Sinha

Jypes of Optical Disks

(Continued from previous slide..)
B Provide an excellent medium to distribute large amounts of data in electronic dorm at low cost.

B A single CD-ROM disk can hold a complete encyclopedia, or a dictionary, or a world atlas, or biographies of great people, etc

B Used for distribution of electronic version of conference proceedings, journals, magazines, books, and multimedia applications such as video games

B Used by software vendors for distribution of software to their customers

Types of Opticsl-Disks

WORM Disk / CD-Recordable (CD-R)

B Stands for Write Once Read Many. Data can be written only once on them, but can be read many times
\& Same as CD-ROM and has same storage capacity
\& Allow users to create their own CD-ROM disks by using a CD-recordable (CD-R) drive that can be attached to a computer as a regular peripheral device

B Data to be recorded can be written on its surface in multiple recording sessions

Jypes of Optical-Disks

(Continued from previous slide..)
B Sessions after the first one are always additive and cannot alter the etched/burned information of earlier sessions

B Information recorded on them can be read by any ordinary CD-ROM drive

B They are used for data archiving and for making a permanent record of data. For example, many banks use them for storing their daily transactions

Types of Optical-Disks

CD-Read/ Write (CD-RW)

B Same as CD-R and has same storage capacity
B Allow users to create their own CD-ROM disks by using a CD-recordable (CD-R) drive that can be attached to a computer as a regular peripheral device

B Data to be recorded can be written on its surface in multiple recording sessions

B Made of metallic alloy layer whose chemical properties are changed during burn and erase

B Can be erased and written afresh

Types of Optical Disks

Digital Video / Versatile Disk (DVD)

B Looks same as CD-ROM but has capacity of 4.7 GB or 8.5 GB

B Designed primarily to store and distribute movies
B Can be used for storage of large data
B Allows storage of video in 4:3 or 16:9 aspect-ratios in MPEG-2 video format using NTSC or PAL resolution

B Audio is usually Dolby ${ }^{\circledR}$ Digital (AC-3) or Digital Theater System (DTS) and can be either monaural or 5.1 Surround Sound

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Adyantages of Optical Disks

B The cost-per-bit of storage for optical disks is very low because of their low cost and enormous storage density.

B The use of a single spiral track makes optical disks an ideal storage medium for reading large blocks of sequential data, such as music.

B Optical disk drives do not have any mechanical read/write heads to rub against or crash into the disk surface. This makes optical disks a more reliable storage medium than magnetic tapes or magnetic disks.

B Optical disks have a data storage life in excess of 30 years. This makes them a better storage medium for data archiving as compared to magnetic tapes or magnetic disks.

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

AdVantages oif Optjeal DjJds

B As data once stored on an optical disk becomes permanent, danger of stored data getting inadvertently erased/overwritten is removed

B Due to their compact size and light weight, optical disks are easy to handle, store, and port from one place to another

B Music CDs can be played on a computer having a CDROM drive along with a sound board and speakers. This allows computer systems to be also used as music systems

Lnsitations of Optical Disks

B It is largely read-only (permanent) storage medium. Data once recorded, cannot be erased and hence the optical disks cannot be reused
B The data access speed for optical disks is slower than magnetic disks
B Optical disks require a complicated drive mechanism

Uses of Optical Diske

B For distributing large amounts of data at low cost
B For distribution of electronic version of conference proceedings, journals, magazines, books, product catalogs, etc
B For distribution of new or upgraded versions of software products by software vendors

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Uses of Optical Diske

(Continued from previous slide..)
B For storage and distribution of a wide variety of multimedia applications
B For archiving of data, which are not used frequently, but which may be used once in a while
B WORM disks are often used by end-user companies to make permanent storage of their own proprietary information

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

リenory Sitorage Devjces

Flash Drive (Pen Drive)

B Relatively new secondary storage device based on flash memory, enabling easy transport of data from one computer to another

B Compact device of the size of a pen, comes in various shapes and stylish designs and may have different added features

B Plug-and-play device that simply plugs into a USB (Universal Serial Bus) port of a computer, treated as removable drive

B Available storage capacities are $8 \mathrm{MB}, 16 \mathrm{MB}, 64 \mathrm{MB}$, $128 \mathrm{MB}, 256 \mathrm{MB}, 512 \mathrm{MB}, 1 \mathrm{~GB}, 2 \mathrm{~GB}, 4 \mathrm{~GB}$, and 8 GB

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

jemory Sicorage Devjces

Memory Card (SD/ MMC)

B Similar to Flash Drive but in card shape
B Plug-and-play device that simply plugs into a port of a computer, treated as removable drive

B Useful in electronic devices like Camera, music player

B Available storage capacities are 8MB, 16MB, 64MB, $128 \mathrm{MB}, 256 \mathrm{MB}, 512 \mathrm{MB}, 1 \mathrm{~GB}, 2 \mathrm{~GB}, 4 \mathrm{~GB}$, and 8 GB

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Mass Storage Devices

B As the name implies, these are storage systems having several trillions of bytes of data storage capacity
B They use multiple units of a storage media as a single secondary storage device
B The three commonly used types are:

1. Disk array, which uses a set of magnetic disks
2. Automated tape library, which uses a set of magnetic tapes
3. CD-ROM Jukebox, which uses a set of CD-ROMs

B They are relatively slow having average access times in seconds

Disk Aなray

B Set of hard disks and hard disk drives with a controller mounted in a single box, forming a single large storage unit

B It is commonly known as a RAID (Redundant Array of Inexpensive Disks)
B As a secondary storage device, provides enhanced storage capacity, enhanced performance, and enhanced reliability

Disk Array

B Enhanced storage capacity is achieved by using multiple disks
B Enhanced performance is achieved by using parallel data transfer technique from multiple disks
B Enhanced reliability is achieved by using techniques such as mirroring or striping
B In mirroring, the system makes exact copies of files on two hard disks

B In striping, a file is partitioned into smaller parts and different parts of the file are stored on different disks

$A R A D D$ Unti

Autonatred"ape Library

B Set of magnetic tapes and magnetic tape drives with a controller mounted in a single box, forming a single large storage unit

B Large tape library can accommodate up to several hundred high capacity magnetic tapes bringing the storage capacity of the storage unit to several terabytes

B Typically used for data archiving and as on-line data backup devices for automated backup in large computer centers

B Set of CD-ROMs and CD-ROM drives with a controller mounted in a single box, forming a single large storage unit
B Large CD-ROM jukebox can accommodate up to several hundred CD-ROM disks bringing the storage capacity of the storage unit to several terabytes
B Used for archiving read-only data in such applications as on-line museums, on-line digital libraries, on-line encyclopedia, etc

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha

Storage flerarchy

As a single type of storage is not superior in speed of access, capacity, and cost, most computer systems make use of a hierarchy of storage technologies as shown below.

Computer Fundamentals: Pradeep K. Sinha \& Priti Sinha.

Key Words/ Phorases

B	Automated tape library
A	Auxiliary memory
A	Block
B	Blocking
B	Blocking factory
B	CD-ROM
B	CD-ROM jukebox
B	Check bit
B	Cylinder
B	Data transfer rate
B	Direct access device
B	Disk array
B	Disk controller
B	Disk drive
B	Disk formatting
B	Disk pack
B	DVD
B	Even parity
B	File Allocation Tube (FAT)

B Floppy disk
B Hard disk
B Inter-block gap (IBG)
B Inter-record gap (IRG)
B Land
B Latency
B Magnetic disk
B Magnetic tape
B Magnetic tape drive
B Mass storage devices
B Master file
B Odd parity
B Off-line storage
B On-line storage
B Optical disk
B Parallel representation
B Parity bit
B Pit

```
        File Allocation Tube (FAT)
```


Key Words/ Phiseses

(Continued from previous slide..)

B QIC Standard
B Record
B Redundant Array of Inexpensive Disks (RAID)
ß Secondary storage
B Sector
B Seek time
B Sequential access device
B Storage hierarchy
ß Tape controller
ß Track
ß Transaction file
ß Winchester disk
ß WORM disk
B Zip disk

[^0]: BCD Codfng Scherse (Exanfole 1)

 ## Example

 Show the binary digits used to record the word BASE in BCD

 Solution:
 $B=110010$ in BCD binary notation
 $A=110001$ in BCD binary notation
 $S=010010$ in BCD binary notation
 $\mathrm{E}=110101$ in BCD binary notation
 So the binary digits
 $\frac{110010}{\mathrm{~B}} \frac{110001}{\mathrm{~A}} \frac{010010}{\mathrm{~S}} \frac{110101}{\mathrm{E}}$
 will record the word BASE in BCD

[^1]: Rules for Binary Division

 1. Start from the left of the dividend
 2. Perform a series of subtractions in which the divisor is subtracted from the dividend
 3. If subtraction is possible, put a 1 in the quotient and subtract the divisor from the corresponding digits of dividend
 4. If subtraction is not possible (divisor greater than remainder), record a 0 in the quotient
 5. Bring down the next digit to add to the remainder digits. Proceed as before in a manner similar to long division
[^2]: Complementinga Boolean Function-(Exanfole)

[^3]: \square
 Chapter 6: Boolean Alaebra and Logic Circuits

