
  

www.ourcreativeinfo.in 

 

Anomalies in DBMS 

Anomaly means inconsistency in the pattern from the normal form. In Database Management 

System (DBMS), anomaly means the inconsistency occurred in the relational table during the 

operations performed on the relational table. 

There can be various reasons for anomalies to occur in the database. For example, if there is a lot 

of redundant data present in our database then DBMS anomalies can occur. If a table is 

constructed in a very poor manner then there is a chance of database anomaly. Due to database 

anomalies, the integrity of the database suffers. 

The other reason for the database anomalies is that all the data is stored in a single table. So, to 

remove the anomalies of the database, normalization is the process which is done where the 

splitting of the table and joining of the table (different types of join) occurs. 

We will see the anomalies present in a table by the different examples: 

Example 1: 

Worker_id Worker_name Worker_dept Worker_address 

65 Ramesh ECT001 Jaipur 

65 Ramesh ECT002 Jaipur 

73 Amit ECT002 Delhi 

76 Vikas ECT501 Pune 

76 Vikas ECT502 Pune 

79 Rajesh ECT669 Mumbai 

In the above table, we have four columns which describe the details about the workers like their 

name, address, department and their id. The above table is not normalized, and there is definitely 

a chance of anomalies present in the table. 

There can be three types of an anomaly in the database: 

Updation / Update Anomaly 

When we update some rows in the table, and if it leads to the inconsistency of the table then this 

anomaly occurs. This type of anomaly is known as an updation anomaly. In the above table, if 

we want to update the address of Ramesh then we will have to update all the rows where Ramesh 

is present. If during the update we miss any single row, then there will be two addresses of 

Ramesh, which will lead to inconsistent and wrong databases. 

Insertion Anomaly 

If there is a new row inserted in the table and it creates the inconsistency in the table then it is 

called the insertion anomaly. For example, if in the above table, we create a new row of a 

worker, and if it is not allocated to any department then we cannot insert it in the table so, it will 

create an insertion anomaly. 

Deletion Anomaly 

If we delete some rows from the table and if any other information or data which is required is 

http://www.ourcreativeinfo.in/


  

www.ourcreativeinfo.in 

also deleted from the database, this is called the deletion anomaly in the database. For example, 
 

in the above table, if we want to delete the department number ECT669 then the details of Rajesh 

will also be deleted since Rajesh's details are dependent on the row of ECT669. So, there will be 

deletion anomalies in the table. 

To remove this type of anomalies, we will normalize the table or split the table or join the tables. 
There can be various normalized forms of a table like 1NF, 2NF, 3NF, BCNF etc. we will apply 

the different normalization schemes according to the current form of the table. 

Example 2: 

Stu_id Stu_name Stu_branch Stu_club 

2018nk01 Shivani Computer science literature 

2018nk01 Shivani Computer science dancing 

2018nk02 Ayush Electronics Videography 

2018nk03 Mansi Electrical dancing 

2018nk03 Mansi Electrical singing 

2018nk04 Gopal Mechanical Photography 

In the above table, we have listed students with their name, id, branch and their respective clubs. 

Updation / Update Anomaly 

In the above table, if Shivani changes her branch from Computer Science to Electronics, then we 

will have to update all the rows. If we miss any row, then Shivani will have more than one 

branch, which will create the update anomaly in the table. 

Insertion Anomaly 

If we add a new row for student Ankit who is not a part of any club, we cannot insert the row 

into the table as we cannot insert null in the column of stu_club. This is called insertion anomaly. 

Deletion Anomaly 

If we remove the photography club from the college, then we will have to delete its row from the 
table. But it will also delete the table of Gopal and his details. So, this is called deletion anomaly 

and it will make the database inconsistent. 

Relational Decomposition 

o When a relation in the relational model is not in appropriate normal form then the 

decomposition of a relation is required. 

o In a database, it breaks the table into multiple tables. 

o If the relation has no proper decomposition, then it may lead to problems like loss of 

information. 

o Decomposition is used to eliminate some of the problems of bad design like anomalies, 

inconsistencies, and redundancy. 

http://www.ourcreativeinfo.in/


 

www.ourcreativeinfo.in 

 

 

Types of Decomposition 
 

 

 

 

Lossless Decomposition 

o If the information is not lost from the relation that is decomposed, then the decomposition 

will be lossless. 

o The lossless decomposition guarantees that the join of relations will result in the same 

relation as it was decomposed. 

o The relation is said to be lossless decomposition if natural joins of all the decomposition 

give the original relation. 

Example: 

EMPLOYEE_DEPARTMENT table: 

EMP_ID EMP_NAME EMP_AGE EMP_CITY DEPT_ID DEPT_NAME 

22 Denim 28 Mumbai 827 Sales 

33 Alina 25 Delhi 438 Marketing 

46 Stephan 30 Bangalore 869 Finance 

52 Katherine 36 Mumbai 575 Production 

60 Jack 40 Noida 678 Testing 

The above relation is decomposed into two relations EMPLOYEE and DEPARTMENT 
 

EMPLOYEE table: 

http://www.ourcreativeinfo.in/


 

www.ourcreativeinfo.in 

 

 

EMP_ID EMP_NAME EMP_AGE EMP_CITY 

22 Denim 28 Mumbai 

33 Alina 25 Delhi 

46 Stephan 30 Bangalore 

52 Katherine 36 Mumbai 

60 Jack 40 Noida 

DEPARTMENT table 

DEPT_ID EMP_ID DEPT_NAME 

827 22 Sales 

438 33 Marketing 

869 46 Finance 

575 52 Production 

678 60 Testing 

Now, when these two relations are joined on the common column "EMP_ID", then the resultant 

relation will look like: 

Employee ⋈ Department 

EMP_ID EMP_NAME EMP_AGE EMP_CITY DEPT_ID DEPT_NAME 

22 Denim 28 Mumbai 827 Sales 

33 Alina 25 Delhi 438 Marketing 

46 Stephan 30 Bangalore 869 Finance 

52 Katherine 36 Mumbai 575 Production 

60 Jack 40 Noida 678 Testing 

Hence, the decomposition is Lossless join decomposition. 

http://www.ourcreativeinfo.in/


 

www.ourcreativeinfo.in 

 

 

Functional Dependency 

The functional dependency is a relationship that exists between two attributes. It typically exists 

between the primary key and non-key attribute within a table. 

1.  X   → Y 

The left side of FD is known as a determinant, the right side of the production is known as a 

dependent 

For example: 

Assume we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address. 

Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table because 

if we know the Emp_Id, we can tell that employee name associated with it. 
Functional dependency can be written as: 

1. Emp_Id → Emp_Name 

We can say that Emp_Name is functionally dependent on Emp_Id. 

 
Types of Functional dependency 

 

 
 

 
 

1. Trivial functional dependency 

o A → B has trivial functional dependency if B is a subset of A. 

o The following dependencies are also trivial like: A → A, B → B 

Example: 

1. Consider a table with two columns Employee_Id and Employee_Name. 

2. {Employee_id, Employee_Name} → Employee_Id is a trivial functional dependency as 

3. Employee_Id is a subset of {Employee_Id, Employee_Name}. 

4. Also, Employee_Id → Employee_Id and Employee_Name → Employee_Name are trivial de 

pendencies too. 

http://www.ourcreativeinfo.in/


 

www.ourcreativeinfo.in 

 

 

2. Non-trivial functional dependency 

o A → B has a non-trivial functional dependency if B is not a subset of A. 

o When A intersection B is NULL, then A → B is called as complete non-trivial. 

Example: 

1. ID   → Name, 

2. Name   → DOB 

 
Inference Rule (IR): 

o The Armstrong's axioms are the basic inference rule. 

o Armstrong's axioms are used to conclude functional dependencies on a relational 

database. 

o The inference rule is a type of assertion. It can apply to a set of FD(functional 

dependency) to derive other FD. 

o Using the inference rule, we can derive additional functional dependency from the initial 

set. 

o The Functional dependency has 6 types of inference rule: 

1. Reflexive Rule (IR1) 

o In the reflexive rule, if Y is a subset of X, then X determines Y. 

1. If X ⊇ Y then X → Y 

Example: 

1. X = {a, b, c, d, e} 

2. Y = {a, b, c} 

 
2. Augmentation Rule (IR2) 

The augmentation is also called as a partial dependency. In augmentation, if X determines Y, 
then XZ determines YZ for any Z. 

1.   If X → Y then XZ →   YZ 

Example: 

1. For R(ABCD), if A → B then AC → BC 

3. Transitive Rule (IR3) 

In the transitive rule, if X determines Y and Y determine Z, then X must also determine Z. 

1. If X →   Y and Y → Z then X →   Z 

 
4. Union Rule (IR4) 

Union rule says, if X determines Y and X determines Z, then X must also determine Y and Z. 

1. If X → Y and X   →  Z then X → YZ 

http://www.ourcreativeinfo.in/


 

www.ourcreativeinfo.in 

 

 

1. X → Y (given) 

2. X → Z (given) 

3. X → XY (using IR2 on 1 by augmentation with X. Where XX = X) 

4. XY → YZ (using IR2 on 2 by augmentation with Y) 

5. X → YZ (using IR3 on 3 and 4) 

5. Decomposition Rule (IR5) 
Decomposition rule is also known as project rule. It is the reverse of union rule. 

This Rule says, if X determines Y and Z, then X determines Y and X determines Z separately. 

1. If X   →   YZ then X   →   Y and X → Z 

1. X → YZ (given) 

2. YZ → Y (using IR1 Rule) 

3. X → Y (using IR3 on 1 and 2) 

6. Pseudo transitive Rule (IR6) 

In Pseudo transitive Rule, if X determines Y and YZ determines W, then XZ determines W. 

 
1. If X →   Y and YZ   →   W then XZ   →   W 

 
1. X → Y (given) 

2. WY → Z (given) 

3. WX → WY (using IR2 on 1 by augmenting with W) 

4. WX → Z (using IR3 on 3 and 2) 

 
Normalization 

A large database defined as a single relation may result in data duplication. This repetition of 

data may result in: 

o Making relations very large. 

o It isn't easy to maintain and update data as it would involve searching many records in 

relation. 

o Wastage and poor utilization of disk space and resources. 

o The likelihood of errors and inconsistencies increases. 

So to handle these problems, we should analyze and decompose the relations with redundant data 

into smaller, simpler, and well-structured relations that are satisfy desirable properties. 

Normalization is a process of decomposing the relations into relations with fewer attributes. 

What is Normalization? 

o Normalization is the process of organizing the data in the database. 

o Normalization is used to minimize the redundancy from a relation or set of relations. It is 

also used to eliminate undesirable characteristics like Insertion, Update, and Deletion 

Anomalies. 

o Normalization divides the larger table into smaller and links them using relationships. 

http://www.ourcreativeinfo.in/


 

www.ourcreativeinfo.in 

 

 

o The normal form is used to reduce redundancy from the database table. 

Why do we need Normalization? 

The main reason for normalizing the relations is removing these anomalies. Failure to eliminate 

anomalies leads to data redundancy and can cause data integrity and other problems as the 

database grows. Normalization consists of a series of guidelines that helps to guide you in 

creating a good database structure. 

Data modification anomalies can be categorized into three types: 

o Insertion Anomaly: Insertion Anomaly refers to when one cannot insert a new tuple into 

a relationship due to lack of data. 

o Deletion Anomaly: The delete anomaly refers to the situation where the deletion of data 

results in the unintended loss of some other important data. 

o Updatation Anomaly: The update anomaly is when an update of a single data value 

requires multiple rows of data to be updated. 

Types of Normal Forms: 
Normalization works through a series of stages called Normal forms. The normal forms apply to 

individual relations. The relation is said to be in particular normal form if it satisfies constraints. 

Normal Form Description 

1NF A relation is in 1NF if it contains an atomic value. 

2NF A relation will be in 2NF if it is in 1NF and all non-key 

attributes are fully functional dependent on the primary key. 

3NF A relation will be in 3NF if it is in 2NF and no transition dependency exists. 

BCNF A stronger definition of 3NF is known as Boyce Codd's normal form. 

4NF A relation will be in 4NF if it is in Boyce Codd's normal 

form and has no multi-valued dependency. 

5NF A relation is in 5NF. If it is in 4NF and does not contain any join 

dependency, joining should be lossless. 

Advantages of Normalization 

o Normalization helps to minimize data redundancy. 

o Greater overall database organization. 

o Data consistency within the database. 

o Much more flexible database design. 

o Enforces the concept of relational integrity. 

http://www.ourcreativeinfo.in/
https://www.javatpoint.com/dbms-first-normal-form
https://www.javatpoint.com/dbms-second-normal-form
https://www.javatpoint.com/dbms-third-normal-form
https://www.javatpoint.com/dbms-forth-normal-form
https://www.javatpoint.com/dbms-fifth-normal-form


 

www.ourcreativeinfo.in 

 

 

Disadvantages of Normalization 

o You cannot start building the database before knowing what the user needs. 

o The performance degrades when normalizing the relations to higher normal forms, i.e., 

4NF, 5NF. 

o It is very time-consuming and difficult to normalize relations of a higher degree. 

o Careless decomposition may lead to a bad database design, leading to serious problems. 

First Normal Form (1NF) 

o A relation will be 1NF if it contains an atomic value. 

o It states that an attribute of a table cannot hold multiple values. It must hold only single- 

valued attribute. 

o First normal form disallows the multi-valued attribute, composite attribute, and their 

combinations. 

o Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute 
EMP_PHONE. 

o EMPLOYEE table: 

EMP_ID EMP_NAME EMP_PHONE EMP_STATE 

14 John 7272826385, 

9064738238 
UP 

20 Harry 8574783832 Bihar 

12 Sam 7390372389, 

8589830302 

Punjab 

 
The decomposition of the EMPLOYEE table into 1NF has been shown below: 

EMP_ID EMP_NAME EMP_PHONE EMP_STATE 

14 John 7272826385 UP 

14 John 9064738238 UP 

20 Harry 8574783832 Bihar 

12 Sam 7390372389 Punjab 

12 Sam 8589830302 Punjab 

http://www.ourcreativeinfo.in/


 

www.ourcreativeinfo.in 

 

 

Second Normal Form (2NF) 

o In the 2NF, relational must be in 1NF. 

o In the second normal form, all non-key attributes are fully functional dependent on the 

primary key 

Example: Let's assume, a school can store the data of teachers and the subjects they teach. In a 

school, a teacher can teach more than one subject. 

TEACHER table 

TEACHER_ID SUBJECT TEACHER_AGE 

25 Chemistry 30 

25 Biology 30 

47 English 35 

83 Math 38 

83 Computer 38 

 
In the given table, non-prime attribute TEACHER_AGE is dependent on TEACHER_ID which 

is a proper subset of a candidate key. That's why it violates the rule for 2NF. 

To convert the given table into 2NF, we decompose it into two tables: 

TEACHER_DETAIL table: 

TEACHER_ID TEACHER_AGE 

25 30 

47 35 

83 38 

 

TEACHER_SUBJECT table: 

TEACHER_ID SUBJECT 

25 Chemistry 

25 Biology 

47 English 

83 Math 

http://www.ourcreativeinfo.in/


 

 

 

  

83 Compute 

 

 

Third Normal Form (3NF) 

o A relation will be in 3NF if it is in 2NF and not contain any transitive partial dependency. 

o 3NF is used to reduce the data duplication. It is also used to achieve the data integrity. 

o If there is no transitive dependency for non-prime attributes, then the relation must be in 

third normal form. 

A relation is in third normal form if it holds atleast one of the following conditions for every 

non-trivial function dependency X → Y. 

1. X is a super key. 

2. Y is a prime attribute, i.e., each element of Y is part of some candidate key. 

3. Example: 

4. EMPLOYEE_DETAIL table: 

EMP_ID EMP_NAME EMP_ZIP EMP_STATE EMP_CITY 

222 Harry 201010 UP Noida 

333 Stephan 02228 US Boston 

444 Lan 60007 US Chicago 

555 Katharine 06389 UK Norwich 

666 John 462007 MP Bhopal 

 
Super key in the table above: 

1. {EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EMP_ZIP}.... so on 

Candidate key: {EMP_ID} 

Non-prime attributes: In the given table, all attributes except EMP_ID are non-prime. 

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP dependent on 

EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively dependent 

on super key(EMP_ID). It violates the rule of third normal form. 

That's why we need to move the EMP_CITY and EMP_STATE to the new 

<EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key. 

EMPLOYEE table: 

EMP_ID EMP_NAME EMP_ZIP 

222 Harry 201010 



 

www.ourcreativeinfo.in 

 

 

333 Stephan 02228 

444 Lan 60007 

555 Katharine 06389 

666 John 462007 

EMPLOYEE_ZIP table: 

EMP_ZIP EMP_STATE EMP_CITY 

201010 UP Noida 

02228 US Boston 

60007 US Chicago 

06389 UK Norwich 

462007 MP Bhopal 

 
Boyce Codd normal form (BCNF) 

o BCNF is the advance version of 3NF. It is stricter than 3NF. 

o A table is in BCNF if every functional dependency X → Y, X is the super key of the 

table. 

o For BCNF, the table should be in 3NF, and for every FD, LHS is super key. 
Example: Let's assume there is a company where employees work in more than one department. 

EMPLOYEE table: 

EMP_ID EMP_COUNTRY EMP_DEPT DEPT_TYPE EMP_DEPT_NO 

264 India Designing D394 283 

264 India Testing D394 300 

364 UK Stores D283 232 

364 UK Developing D283 549 

In the above table Functional dependencies are as follows: 

1. EMP_ID → EMP_COUNTRY 

2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO} 

Candidate key: {EMP-ID, EMP-DEPT} 

The table is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys. 

http://www.ourcreativeinfo.in/


 

www.ourcreativeinfo.in 

 

 

To convert the given table into BCNF, we decompose it into three tables: 

EMP_COUNTRY table: 

EMP_ID EMP_COUNTRY 

264 India 

264 India 

 
EMP_DEPT table: 

EMP_DEPT DEPT_TYPE EMP_DEPT_NO 

Designing D394 283 

Testing D394 300 

Stores D283 232 

Developing D283 549 

EMP_DEPT_MAPPING table: 

EMP_ID EMP_DEPT 

D394 283 

D394 300 

D283 232 

D283 549 

Functional dependencies: 

1. EMP_ID   → EMP_COUNTRY 

2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO} 

Candidate keys: 

For the first table: EMP_ID 

For the second table: EMP_DEPT 

For the third table: {EMP_ID, EMP_DEPT} 

Now, this is in BCNF because left side part of both the functional dependencies is a key. 

http://www.ourcreativeinfo.in/

