
Loops in C

 During programming, sometimes we might need to execute a certain code statement again
and again.

 We can write the code statement as many times as we need it to execute but that would be
very inefficient, because what if you want a code statement to execute a 100 times? This is
why we use loops.

 In any programming language including C language, loops are used to execute a single
statement or a set of statements, repeatedly, until a particular condition is satisfied.

How Loops in C works?
The below diagram depicts a loop execution,

Loops are broadly classified into two types:

1. Entry controlled loops

 In this kind of loop, the condition is checked before executing the loop's body. So, if the
condition is never true, it won't execute even once. For example, for and while loop.

2. Exit controlled loops

 In this kind of loop, the condition is checked after the loop's body is executed, i.e., in the
end. Hence, even if the condition is not fulfilled, this loop will execute one time. The do-
while loop is an example of exit controlled loop.

Types of Loop in C

There are 3 types of Loop in C language, namely:
1. for loop
2. while loop
3. do while loop

 for loop

 The for loop in C is used to execute a set of statements repeatedly until a particular
condition is satisfied. We can say it is an open ended loop. General format is,

 Syntax :

The for loop is executed as follows:

1. It first evaluates the initialization code.

2. Then it checks the condition expression.

3. If it is true, it executes the for-loop body.

4. Then it evaluate the increment/decrement condition and again follows from step
2.

5. When the condition expression becomes false, it exits the loop.

for(Initialiazation; condition; Increament/Decrement);
{
 Statement –Block;
}

ex 1 : Program to print repeated statement using for loop;
#include<stdio.h>
int main()
{
 int n,i;

 printf("\nEnter a Number : ");
 scanf("%d",&n);

 for(i=1; i<=n; i++)
 {
 printf("\nHello World!");
 }

 return 0;
}

Output :
Enter a Number : 5

Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

ex 2 : Program to print natural number using for loop.
#include<stdio.h>
int main()
{
 int n,i;

 printf("\nEnter a Number elments : ");
 scanf("%d",&n);

 for(i=1; i<=n; i++)
 {
 printf("%d\t ",i);
 }

 return 0;
}

Output :
Enter a Number elments : 10
1 2 3 4 5 6 7 8 9 10

while loop in C

The while loop is an entry controlled loop. It is completed in 3 steps.

 Variable initialization.(e.g int x = 0;)

 condition(e.g while(x <= 10))

 Variable increment or decrement (x++ or x-- or x = x + 2)

Syntax of while Loop:

ex 1 : Program to print repeated statement using for loop;
#include<stdio.h>
int main()
{
 int n,i;

 printf("\nEnter a Number : ");
 scanf("%d",&n);

 i=1;
 while(i<=n)
 {
 printf("\nHello World!");
 i++;
 }

 return 0;
}

variable initialization;

while(condition)

{

 statements;

 variable increment or decrement;

}

Output :
Enter a Number : 5

Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

ex 2 : Program to find the Factorial of given number using while loop.
#include<stdio.h>
int main()
{
 int n,i,fact;

 printf("\nEnter a Number : ");
 scanf("%d",&n);

 fact=1;
 i=1;
 while(i<=n)
 {
 fact=fact*i;
 printf("\nFactrial of %d is : %d ",i,fact);
 i++;
 }

 return 0;
}

Output :
Enter a Number : 7

Factrial of 1 is : 1
Factrial of 2 is : 2
Factrial of 3 is : 6
Factrial of 4 is : 24
Factrial of 5 is : 120
Factrial of 6 is : 720
Factrial of 7 is : 5040

do-while loop

The do/while loop is a variant of the while loop. This loop will execute the code block
once, before checking if the condition is true, then it will repeat the loop as long as the condition
is true.

Syntax :

ex 1 : Program to print repeated statement using for loop;
#include<stdio.h>
int main()
{
 int n,i;

 printf("\nEnter a Number : ");
 scanf("%d",&n);

 i=1;
 do
 {
 printf("\nHello World!");
 i++;
 }while(i<=n);

 return 0;
}

Output :
Enter a Number : 5

Hello World!
Hello World!
Hello World!
Hello World!
Hello World!

Initialization;
do
{
 // the body of the loop
 Increment/Decrement;
}
while (testExpression);

ex 2 : Program to find the Factorial of given number using while loop.
#include<stdio.h>
int main()
{
 int n,i,fact;

 printf("\nEnter a Number : ");
 scanf("%d",&n);

 fact=1;
 i=1;
 do
 {
 fact=fact*i;
 printf("\nFactrial of %d is : %d ",i,fact);
 i++;
 } while(i<=n);

 return 0;
}

Output :

Enter a Number : 10

Factrial of 1 is : 1

Factrial of 2 is : 2

Factrial of 3 is : 6

Factrial of 4 is : 24

Factrial of 5 is : 120

Factrial of 6 is : 720

Factrial of 7 is : 5040

Factrial of 8 is : 40320

Factrial of 9 is : 362880

Factrial of 10 is : 3628800

Nested loop :

A nested loop means a loop statement inside another loop statement. That is why nested loops
are also called “loop inside loops“. We can define any number of loops inside another loop.
 OR
Defining one loop body into another loop body is nothing but nested loop.
 Nested loops are generally used in sorting techniques , arrays elements etc.
 pattern printing.

ex 1:

#include<stdio.h>
int main()
{
 int n,i,j;

 printf("\nEnter a Number : ");
 scanf("%d",&n);

 for(i=1; i<=n; i++)
 {
 for(j=1; j<=n; j++)
 {
 printf("%d ",i);
 }
 printf("\n");
 }

 return 0;
}

Output :

Enter a Number : 5
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

ex 2 :
#include<stdio.h>
int main()
{
 int n,i,j;

 printf("\nEnter a Number : ");
 scanf("%d",&n);

 for(i=1; i<=n; i++)
 {
 for(j=1; j<=n; j++)
 {
 printf("* ");
 }
 printf("\n");
 }

 return 0;
}
Enter a Number : 5
* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

ex 3 :
#include<stdio.h>
int main()
{
 int n,i,j;

 printf("\nEnter a Number : ");
 scanf("%d",&n);

 for(i=1; i<=n; i++)
 {
 for(j=1; j<=i; j++)
 {
 printf("* ");
 }
 printf("\n");
 }

 return 0;
}
Enter a Number : 5
*
* *
* * *
* * * *
* * * * *

Jump or Branching statements :

 Jump statements are used to interrupt the normal flow of programs. Jump statements are

used to jump from one section of the program to another.

Types of jump statements in C.
Break;
continue;
goto label;
return;

break :
Break statement is used to come out/break from looping statements and/or switch statements .

 It skips the rest of the iterations inside loops.
 Break statement can be conditional or unconditional.

ex :
#include<stdio.h>
int main()
{
 int n,i,j;

 printf("\nEnter a Number : ");
 scanf("%d",&n);

 for(i=1; i<=n; i++)
 {
 if(i==3)
 {
 break;
 }
 printf("\n%d",i);
 }

 return 0;
}

Output :
Enter a Number : 5

1
2

Continue :

 It skips the current/present iteration in looping statements.
 It will not execute the current iteration but it executes remaining iterations.

#include<stdio.h>
int main()
{
 int n,i,j;

 printf("\nEnter a Number : ");
 scanf("%d",&n);

 for(i=1; i<=n; i++)
 {
 if(i==3)
 {
 continue;

 }
 printf("\n%d",i);
 }

 return 0;
}

Output :
Enter a Number : 10

1
2
4
5
6
7
8
9
10

3 is not print because of the condition if(i==3).

goto statement : To jump from one part of the program to another part, parts are nothing
but labels;
goto keyword is used to execute label block.

Syntax :

Labelname : It is a name of the part of the program, must be a valid identifier.

Label creation Syntax :

 Labelname:

ex 1 : Program to find the you are eligible for vote or not.
#include<stdio.h>
int main()
{
 int age;
 read:

 printf("\nEnter Your Age : ");
 scanf("%d",&age);

 if(age<18)
 {
 printf("your are not matured");
 goto read;
 }
 else
 {
 goto next;
 }
 next:
 printf("\nYes your are eligible for voting...");

 return 0;
}

Output 1
Enter Your Age : 18
Yes your are eligible for voting...

Output 2
Enter Your Age : 16
your are not matured

ex 2 : Program to read numbers from the keyboard continuously till
the user presses 999 and to find the sum of only positive numbers.
#include<stdio.h>
int main()
{
 int n,sum=0;

 read:

 printf("\nEnter a NUmber : ");
 scanf("%d",&n);

 if(n!=999)
 {
 if(n>=0)
 {
 sum=sum+n;
 }
 goto read;
 }

 printf("\nSum of Positive Number = %d ",sum);

 return 0;
}
Output :
Enter a Number : 10

Enter a Number : 10

Enter a Number : 10

Enter a Number : 10

Enter a Number : 10

Enter a Number : 20

Enter a Number : 20

Enter a Number : 20

Enter a Number : 20

Enter a Number : 20

Enter a Number : 999

Sum of Positive Number = 150

return statement :
 it returns the control along with optional value back to the caller.
 It is used in functions body.

Ex :

#include<stdio.h>
int add(int x, int y);
int main()
{
 int res,x,y;

 printf("\nEnter two numbers : ");
 scanf("%d%d",&x,&y);

 res=add(x,y);
 printf("\nResult = %d",res);

 return 0;
}
int add(int x, int y)
{
 int res;
 res=x+y;
 return res;
}

Output :

Enter two numbers : 10 20
Result = 30

