
Concepts of C
1) Getting started with C Language

2) Basic concept of C

3) What is c language

4) History of C language

5) Features of C language

6) First C Program

7) Printf and Scanf

8) Variables in C

9) Datatypes in C

10) Keywords in C

11) Identifier in C

12) C Operator

13) C Comments

14) C Format Specifier

15) Escape Sequence

16) Ascii Value in C

17) Constants in C

18) Tokens in C

C Programming Language Tutorial

 What is C Language?

C language Tutorial with programming approach for beginners and professionals,
helps you to understand the C language tutorial easily. Our C tutorial explains each topic
with programs.

The C Language is developed by Dennis Ritchie for creating system applications that
directly interact with the hardware devices such as drivers, kernels, etc.

C programming is considered as the base for other programming languages, that is why
it is known as mother language.

It can be defined by the following ways:

1. Mother language
2. System programming language
3. Procedure-oriented programming language
4. Structured programming language
5. Mid-level programming language

1) C as a mother language

C language is considered as the mother language of all the modern programming
languages because most of the compilers, JVMs, Kernels, etc. are written in C
language, and most of the programming languages follow C syntax, for example, C++,
Java, C#, etc.

It provides the core concepts like the array, strings, functions, file handling, etc.
that are being used in many languages like C++, Java, C#, etc.

2) C as a system programming language

A system programming language is used to create system software. C language
is a system programming language because it can be used to do low-level
programming (for example driver and kernel). It is generally used to create
hardware devices, OS, drivers, kernels, etc. For example, Linux kernel is written in C.

It can't be used for internet programming like Java, .Net, PHP, etc.

3) C as a procedural language

A procedure is known as a function, method, routine, subroutine, etc. A
procedural language specifies a series of steps for the program to solve the
problem.

A procedural language breaks the program into functions, data structures, etc.

C is a procedural language. In C, variables and function prototypes must be declared
before being used.

4) C as a structured programming language

A structured programming language is a subset of the procedural
language. Structure means to break a program into parts or blocks so that it may be
easy to understand.

In the C language, we break the program into parts using functions. It makes the
program easier to understand and modify.

5) C as a mid-level programming language

C is considered as a middle-level language because it supports the feature of
both low-level and high-level languages. C language program is converted into
assembly code, it supports pointer arithmetic (low-level), but it is machine
independent (a feature of high-level).

A Low-level language is specific to one machine, i.e., machine dependent. It is
machine dependent, fast to run. But it is not easy to understand.

A High-Level language is not specific to one machine, i.e., machine independent. It is
easy to understand.

History of C Language

History of C language is interesting to know. Here we are going to discuss a brief
history of the c language.

C programming language was developed in 1972 by Dennis Ritchie at bell
laboratories of AT&T (American Telephone & Telegraph), located in the U.S.A.

Dennis Ritchie is known as the founder of the c language.

It was developed to overcome the problems of previous languages such as B, BCPL,
etc.

Features of C Language

C is the widely used language. It provides many features that are given below.

1. Simple

2. Machine Independent or Portable

3. Mid-level programming language

4. structured programming language

5. Rich Library

6. Memory Management

7. Fast Speed

8. Pointers

9. Recursion

10. Extensible

1) Simple
C is a simple language in the sense that it provides a structured approach (to break the
problem into parts), the rich set of library functions, data types, etc.

2) Machine Independent or Portable
Unlike assembly language, c programs can be executed on different machines with

some machine specific changes. Therefore, C is a machine independent language.

3) Mid-level programming language
Although, C is intended to do low-level programming. It is used to develop system
applications such as kernel, driver, etc. It also supports the features of a high-level
language. That is why it is known as mid-level language.

4) Structured programming language
C is a structured programming language in the sense that we can break the program
into parts using functions. So, it is easy to understand and modify. Functions also
provide code reusability.

5) Rich Library
C provides a lot of inbuilt functions that make the development fast.

6) Memory Management
It supports the feature of dynamic memory allocation. In C language, we can free the
allocated memory at any time by calling the free() function.

7) Speed
The compilation and execution time of C language is fast since there are lesser inbuilt
functions and hence the lesser overhead.

8) Pointer
C provides the feature of pointers. We can directly interact with the memory by using
the pointers. We can use pointers for memory, structures, functions, array, etc.

9) Recursion
In C, we can call the function within the function. It provides code reusability for every
function. Recursion enables us to use the approach of backtracking.

10) Extensible
C language is extensible because it can easily adopt new features.

First C Program

Before starting the abcd of C language, you need to learn how to write, compile and run
the first c program.

To write the first c program, open the C console and write the following code:

#include <stdio.h>
int main()
{
 printf("Hello C Language");
 return 0;
}

#include <stdio.h> includes the standard input output library functions. The printf()
function is defined in stdio.h .

int main() The main() function is the entry point of every program in c language.

printf() The printf() function is used to print data on the console.

return 0 The return 0 statement, returns execution status to the OS. The 0 value is used
for successful execution and 1 for unsuccessful execution.

printf() and scanf() in C

The printf() and scanf() functions are used for input and output in C language. Both
functions are inbuilt library functions, defined in stdio.h (header file).

 printf() function

The printf() function is used for output. It prints the given statement to the console.

The syntax of printf() function is given below:

printf("format string",argument_list);

example : printf(“Hello World! ”);

The format string can be %d (integer), %c (character), %s (string), %f (float) etc.

 scanf() function

The scanf() function is used for input. It reads the input data from the console.

scanf("format string",argument_list);

example : scanf(“%d”,&a);

Program to print cube of given number

Let's see a simple example of c language that gets input from the user and prints the
square of the given number.

#include<stdio.h>
int main()
{
 int num;
 printf("enter a number:");
 scanf("%d",&num);

 printf("cube of number is: %d ",num*num*num);

 return 0;
}

Variables in C

 Variable is a name given to memory location; it is used to store data/values of
different types”.

 Features
 Values of the variables may be changed during program execution.
 Variable name must be a valid identifier.
 Variables are containers to hold values.
 At a time one variable can hold maximum one value

Variable Declarations/Creation

 Syntax : datatype variablename;

Ex: int x; float y; double d; char ch;

Variable Initialization
Variable initialization means storing some initial value to the variable.

Syntax : variable = value ;

 Example1: int num; num = 10

Rules for defining the variable :

 A variable can have alphabets, digits, and underscore.

 A variable name can start with the alphabet, and underscore only. It can't start
with a digit.

 No whitespace is allowed within the variable name.

 A variable name must not be any reserved word or keyword, e.g. int, float, etc.

Types of Variables in C
There are many types of variables in c :

 local variable

 global variable

 static variable

 automatic variable

 external variable

Local Variable

 A variable that is declared inside the function or block is called a local variable.

 It must be declared at the start of the block.

Example
void function1()
{
 int x=10;//local variable
}

You must have to initialize the local variable before it is used.

Global Variable

A variable that is declared outside the function or block is called a global variable. Any
function can change the value of the global variable. It is available to all the functions.

It must be declared at the start of the block.

int value=20;//global variable
void function1()
{
 int x=10;//local variable
}

 Static Variable

A variable that is declared with the static keyword is called static variable.It retains its
value between multiple function calls.

void function1()
{
 int x=10;//local variable
 static int y=10;//static variable
 x=x+1;
 y=y+1;
 printf("%d,%d",x,y);
}

Automatic Variable
All variables in C that are declared inside the block, are automatic variables by default.
We can explicitly declare an automatic variable using auto keyword.
void main()

{

 int x=10;//local variable (also automatic)

 auto int y=20;//automatic variable

}

External Variable

We can share a variable in multiple C source files by using an external variable. To
declare an external variable, you need to use extern keyword.

extern int x=10;//external variable (also global)

#include "myfile.h"
#include <stdio.h>
void printValue()
{
 printf("Global variable: %d", global_variable);
}

Data Types in C

A data type specifies the type of data that a variable can store such as integer, floating,
character, etc.

There are the following data types in C language.

Types Data Types

Basic Data Type int, char, float, double

Derived Data Type array, pointer, structure, union

Enumeration Data Type enum

Void Data Type void

Basic Data Types

The basic data types are integer-based and floating-point based. C language supports
both signed and unsigned literals.

The memory size of the basic data types may change according to 32 or 64-bit operating
system.

Data Types Memory Size Range
char 1 byte −128 to 127
signed char 1 byte −128 to 127
unsigned char 1 byte 0 to 255
short 2 byte −32,768 to 32,767
signed short 2 byte −32,768 to 32,767
unsigned short 2 byte 0 to 65,535
int 2 byte −32,768 to 32,767
signed int 2 byte −32,768 to 32,767
unsigned int 2 byte 0 to 65,535
short int 2 byte −32,768 to 32,767
signed short int 2 byte −32,768 to 32,767
unsigned short int 2 byte 0 to 65,535
long int 4 byte -2,147,483,648 to

2,147,483,647
signed long int 4 byte -2,147,483,648 to

2,147,483,647
unsigned long int 4 byte 0 to 4,294,967,295
float 4 byte
double 8 byte
long double 10 byte
char 1 byte −128 to 127

Keywords in C

A keyword is a reserved word. You cannot use it as a variable name, constant name, etc.
There are only 32 reserved words (keywords) in the C language.

A list of 32 keywords in the c language is given below :

auto break case char const continue default do

double else enum extern float for goto if

int long register return short signed sizeof static

struct switch typedef union unsigned void volatile while

Identifiers: -

“A Name in C Program is called an identifier, it can be a variable name, a function
name, a structure name, label etc. these are user defined words”.

Uses: -

To give a name to entities like variable, function, labels, structures in C program
etc.
Identifiers are used for identification purpose.

Rules for Defining an Identifier.

a. Allowed Characters are: -
i. Alphabets: - Uppercase(A-Z) & Lowercase(a-z)

ii. Digits: - (0-9)
iii. Special Symbols: _ (Underscore), $ (Dollar)

b. Identifier should not start with digits.
c. Identifier should not be a keyword.
d. Identifiers are case sensitive.
e. Identifier name must be unique in a program.
f. There is no space between an identifier word.

Constants:

Constant : It is value that cannot be changed
execution of the program.

These are fixed value in C. These are also called as literals.

Any value which is directly referred in a program is a constant.
Ex: 5, 44.55, ‘á’, “KLE”, ‘ ’

Constants are classified as:

List of Constants in C
Constant

Decimal Constant

Real or Floating-point Constant

Octal Constant

Hexadecimal Constant

Character Constant

String Constant

2 ways to define constant in C

There are two ways to define constant in

1. const keyword

2. #define preprocessor

It is value that cannot be changed/altered by the program during
execution of the program.

These are fixed value in C. These are also called as literals.

Any value which is directly referred in a program is a constant.
Ex: 5, 44.55, ‘á’, “KLE”, ‘ ’

Constants are classified as:

Example

10, 20, 450 etc.

point Constant 10.3, 20.2, 450.6 etc.

021, 033, 046 etc.

0x2a, 0x7b, 0xaa etc.

'a', 'b', 'x' etc.

"c", "c program", "c in javatpoint" etc.

2 ways to define constant in C

There are two ways to define constant in C programming.

/altered by the program during

"c", "c program", "c in javatpoint" etc.

C Operators

An operator is simply a symbol that is used to perform operations. There can be many
types of operations like arithmetic, logical, bitwise, etc.

There are following types of operators to perform different types of operations in C
language.

1. Arithmetic Operators
2. Relational Operators
3. Shift Operators
4. Logical Operators
5. Bitwise Operators
6. Ternary or Conditional Operators
7. Assignment Operator
8. Misc Operator

Precedence of Operators in C

 The precedence of operator species that which operator will be evaluated
first and next. The associativity specifies the operator direction to be
evaluated; it may be left to right or right to left.

 Let's understand the precedence by the example given below :

int value=10+20*10;

 The value variable will contain 210 because * (multiplicative operator) is
evaluated before + (additive operator).

The precedence and associativity of C operators is given below :

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* &
sizeof

Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<=
&= ^= |=

Right to left

Comma , Left to right

Comments in C

Comments in C language are used to provide information about lines of code. It is
widely used for documenting code. There are 2 types of comments in the C language.

1. Single Line Comments

2. Multi-Line Comments

Single Line Comments
Single line comments are represented by double slash \\. Let's see an example of a
single line comment in C.
#include<stdio.h>
int main()
{
 //printing information
 printf("Hello C");
 return 0;
}

Even you can place the comment after the statement. For example
printf("Hello C");//printing information

Multi Line Comments
Multi-Line comments are represented by slash asterisk * ... *\. It can occupy many lines
of code, but it can't be nested. Syntax
/*

code

to be commented

*/

Let's see an example of a multi-Line comment in C.

#include<stdio.h>
int main()
{
 /*printing information
 Multi-Line Comment*/
 printf("Hello C");
 return 0;
}

C Format Specifier

The Format specifier is a string used in the formatted input and output functions. The
format string determines the format of the input and output. The format string always
starts with a '%' character.

The commonly used format specifiers in printf() function are:

Format specifier Description

%d or %i It is used to print the signed integer value where
signed integer means that the variable can hold
both positive and negative values.

%u It is used to print the unsigned integer value
where the unsigned integer means that the
variable can hold only positive value.

%o It is used to print the octal unsigned integer
where octal integer value always starts with a 0
value.

%x It is used to print the hexadecimal unsigned
integer where the hexadecimal integer value
always starts with a 0x value. In this, alphabetical
characters are printed in small letters such as a,
b, c, etc.

%X It is used to print the hexadecimal unsigned
integer, but %X prints the alphabetical characters
in uppercase such as A, B, C, etc.

%f It is used for printing the decimal floating-point
values. By default, it prints the 6 values after '.'.

%e/%E It is used for scientific notation. It is also known
as Mantissa or Exponent.

%g It is used to print the decimal floating-point
values, and it uses the fixed precision, i.e., the
value after the decimal in input would be exactly
the same as the value in the output.

%p It is used to print the address in a hexadecimal
form.

%c It is used to print the unsigned character.

%s It is used to print the strings.

%ld It is used to print the long-signed integer value.

Escape Sequence in C

An escape sequence in C language is a sequence of characters that doesn't represent
itself when used inside string literal or character.

It is composed of two or more characters starting with backslash \. For example: \n
represents new line.

List of Escape Sequences in C
Escape Sequence Meaning

\a Alarm or Beep
\b Backspace
\f Form Feed
\n New Line
\r Carriage Return
\t Tab (Horizontal)
\v Vertical Tab
\\ Backslash
\' Single Quote
\" Double Quote
\? Question Mark
\nnn octal number
\xhh hexadecimal number
\0 Null

Escape Sequence Example

#include<stdio.h>
int main()
{
 int number = 50;
 printf("You\nare\nlearning\n\'c\' language\n\"Do you know C language\"");
 return 0;
}

Output :

You
are
learning
'c' language
"Do you know C language"

ASCII value in C

What is ASCII code?

The full form of ASCII is the American Standard Code for information interchange. It is a
character encoding scheme used for electronics communication. Each character or a
special character is represented by some ASCII code, and each ascii code occupies 7 bits
in memory.

In C programming language, a character variable does not contain a character value
itself rather the ascii value of the character variable.

The ascii value represents the character variable in numbers, and each character
variable is assigned with some number range from 0 to 127. For example, the ascii value
of 'A' is 65.

In the above example, we assign 'A' to the character variable whose ascii value is 65, so
65 will be stored in the character variable rather than 'A'.

Let's understand through an example.

We will create a program which will display the ascii value of the character variable.

#include <stdio.h>

int main()

{

 char ch; // variable declaration

 printf("Enter a character : ");

 scanf("%c",&ch); // user input

 printf("\n The ascii value of the ch variable is : %d", ch);

 return 0;

}

Output :

Enter a character : g

The ascii value of the ch variable is : 103

Tokens in C

Tokens in C is the most important element to be used in creating a program in C. We can
define the token as the smallest individual element in C. For `example, we cannot create
a sentence without using words; similarly, we cannot create a program in C without
using tokens in C. Therefore, we can say that tokens in C is the building block or the
basic component for creating a program in C language.

Classification of tokens in C

Tokens in C language can be divided into the following categories:

o Keywords in C

o Identifiers in C

o Strings in C

o Operators in C

o Constant in C

o Special Characters in C

Let's understand each token one by one.

4.7M

Ubuntu Cinnamon Remix: A New

Keywords in C

Keywords in C can be defined as the pre-defined or the reserved words having its own
importance, and each keyword has its own functionality. Since keywords are the pre-
defined words used by the compiler, so they cannot be used as the variable names. If
the keywords are used as the variable names, it means that we are assigning a different
meaning to the keyword, which is not allowed. C language supports 32 keywords given
below:

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Identifiers in C

Identifiers in C are used for naming variables, functions, arrays, structures, etc.
Identifiers in C are the user-defined words. It can be composed of uppercase letters,
lowercase letters, underscore, or digits, but the starting letter should be either an
underscore or an alphabet. Identifiers cannot be used as keywords. Rules for
constructing identifiers in C are given below:

o The first character of an identifier should be either an alphabet or an underscore,
and then it can be followed by any of the character, digit, or underscore.

o It should not begin with any numerical digit.

o In identifiers, both uppercase and lowercase letters are distinct. Therefore, we
can say that identifiers are case sensitive.

o Commas or blank spaces cannot be specified within an identifier.

o Keywords cannot be represented as an identifier.

o The length of the identifiers should not be more than 31 characters.

o Identifiers should be written in such a way that it is meaningful, short, and easy
to read.

Strings in C

Strings in C are always represented as an array of characters having null character '\0' at
the end of the string. This null character denotes the end of the string. Strings in C are
enclosed within double quotes, while characters are enclosed within single characters.
The size of a string is a number of characters that the string contains.

Now, we describe the strings in different ways :

char a[10] = "javatpoint"; // The compiler allocates the 10 bytes to the 'a' array.

char a[] = "javatpoint"; // The compiler allocates the memory at the run time.

char a[10] = {'j','a','v','a','t','p','o','i','n','t','\0'}; // String is represented in the form of
characters.

Operators in C

Operators in C is a special symbol used to perform the functions. The data items on
which the operators are applied are known as operands. Operators are applied between
the operands. Depending on the number of operands, operators are classified as follows
:

Unary Operator

A unary operator is an operator applied to the single operand. For example: increment
operator (++), decrement operator (--), sizeof, (type)*.

Binary Operator

The binary operator is an operator applied between two operands. The following is the
list of the binary operators:

1. Arithmetic Operators

2. Relational Operators

3. Shift Operators

4. Logical Operators

5. Bitwise Operators

6. Conditional Operators

7. Assignment Operator

8. Misc Operator

Constants in C

A constant is a value assigned to the variable which will remain the same throughout
the program, i.e., the constant value cannot be changed.

There are two ways of declaring constant:

o Using const keyword

o Using #define pre-processor

Types of constants in C

Constant Example

Integer constant 10, 11, 34, etc.

Floating-point constant 45.6, 67.8, 11.2, etc.

Octal constant 011, 088, 022, etc.

Hexadecimal constant 0x1a, 0x4b, 0x6b, etc.

Character constant 'a', 'b', 'c', etc.

String constant "java", "c++", ".net", etc.

Special characters in C
Some special characters are used in C, and they have a special meaning which cannot be
used for another purpose.

o Square brackets []: The opening and closing brackets represent the single and

multidimensional subscripts.

o Simple brackets (): It is used in function declaration and function calling. For example,

printf() is a pre-defined function.

o Curly braces { }: It is used in the opening and closing of the code. It is used in the

opening and closing of the loops.

o Comma (,): It is used for separating for more than one statement and for example,

separating function parameters in a function call, separating the variable when printing

the value of more than one variable using a single printf statement.

o Hash/pre-processor (#): It is used for pre-processor directive. It basically denotes that

we are using the header file.

o Asterisk (*): This symbol is used to represent pointers and also used as an operator for

multiplication.

o Tilde (~): It is used as a destructor to free memory.

o Period (.): It is used to access a member of a structure or a union.

 C Control Statement : Control statements are used to control the flow of execution
since C language is a sequential programming language.

If we want to execute or skip some parts/statements of the program as per
requirement, then we can go for control statements.

1. Decision Making Statements: simple if, if-else, nested if-else,
else-if ladder
2. Selection Statements: switch statement
3. Looping or Iterative Statements: for, while, do-while
4. Jump or Branching Statements: break, continue, return, goto

1) Decision Making :
Based Condition/Expression Result we can take decision to execute parts of the
program.

1.1 simple if () statement: if the expression result is true then if body will
execute, if the expression result is false then if body will not execute. If the
condition returns false then the statements inside “if” are skipped.

Syntax :

Ex :

#include<stdio.h>
int main()
{
 int num; num = 101;
 if(num == 100)
 {
 printf("Yes num is equals to 100");
 }
 printf("\n I am out of if body...");

 return 0;
}

Output :
I am out of if body...

if (Expression/Condition)
{
statement1; statement2;
}
Next_Statement;

1.1 if else statement :
If condition returns true then the statements inside the body of “if” are executed
and the statements inside body of “else” are skipped.

If condition returns false then the statements inside the body of “if” are skipped
and the statements in “else” are executed.

Syntax :

Ex :

#include<stdio.h>
int main()
{
 int a,b;
 a = 10;
 b = 20;

 if(a>b)
 {
 printf("\nMaximum = %d",a);
 }
 else
 {
 printf("\nMaximum = %d",b);
 }

 return 0;

}
Output :

Maximum = 20

1.2 nested if-else statement
Nesting means defining if-else body into another if-else body, Execution of inner if-
else body depends on outer expression result.

Syntax :

if (Expression)
{
 statement1;
}
else
{
 statement2;

}

Ex :

#include<stdio.h>
int main()
{
 int a,b,c;
 printf("\nEnter a Number : ");
 scanf("%d%d%d",&a,&b,&c);

 if(a>=b && a>=c)
 {
 printf("%d is Maximum",a);
 }
 else if(b>=a && b>=c)
 {
 printf("%d is Maximum",b);
 }
 else
 {
 printf("%d is Maximum",c);
 }
}

Output :
Enter a Number : 10 20 30
30 is Maximum

if (Expression1)
{
 if (Expression2)
 {
 Statement1;
 }
 else
 {
 Statement2;
 }

}

else

{

 Statement3;

}

else-if ladder/if-else-if ladder

else-if ladder is used to execute a block of code that is decided from multiple
options/Conditions.

If any condition becomes true then the statements associated with that if body is executed,
and the rest of the C else-if ladder is bypassed(skipped).

Syntax :

if (Expression1)

{

 statement1;

}

else if (Expression2)

{

 statement2;

}

else if (Expression3)

{

 statement3;

}

else if (Expression4)

{

 statement4;

}

………

else

{

 Statement n;

}

Next_Statement;

Ex :

#include<stdio.h>
int main()
{
 int age,temp=0;

 printf("\n\nEnter Your Age Here :");
 scanf("%d",&age);

 if(age>=18 && age<100)
 {
 printf("\n Congratulation !!!! You are Eligible for Voting ");
 }
 else if(age>=100)
 {
 printf("\nYou are Eligible But We Suggest Take a Rest ");
 }
 else
 {
 printf("\nYou Are Not Eligible or You are Not Mature ");

 }

 return 0;
}
Output :
Enter Your Age Here :20
Congratulation !!!! You are Eligible for Voting

2. Selection Statements: switch statement
Keywords: switch, case, break, default.

- switch statement is used to execute block of statements if any matching
case is found in the switch body, with respect switch variable/value.

- If any matching case is found then default case will execute.
- Break statement is used to exit/come out of from switch body.
- Switch works only with integers and characters values. Hence variables must be

of int or char type.
Syntax :

switch (Variable/value)
{
 case value1: statements;
 break;
 case value2: statements;
 break;
 case valueN: statements;

break;
 default : statements;
}

Ex1:
Int x;
X=3;
switch(x)
{

case 1: printf(“\n Result = 1”);

break;

case 2: printf(“\n Result = 2”);

break;

case 3: printf(“\n Result = 3”);
break;

case 4: printf(“\n Result = 4”);

break;

default: printf(“\n No Matching Value”);

break;

}

Output: Result = 3

C Program to check whether a given character is Vowel or Consonant.
#include<stdio.h>

 int main()
{

char ch;

printf("\nEnter a Character : ");
scanf("%c", &ch);

switch(ch)
{

case 'a' :
case 'A' :
case 'e' :
case 'E' :
case 'i' :
case 'I' :
case 'o' :
case 'O' :
case 'u' :
case 'U' : printf("\n %c is Vowel",ch); break;
default : printf("\n %c is Consonant",ch); break;

}

}

 Output:

Enter a Character:
A is Vowel

