

0	6	95	56	1	1	
	32	252	21	/ E	2	10

~	=	2.52					E _{CM}
Reg. No.		2		10			Age.
10 PM			9	 je	- 4	-20-	1

V Semester B.C.A. 3 Theory Examination, September - 2020 Operating System

Abraham Silbers Chatz / Galvin (Repeater/Regular)

的复数 (主义·) " (1) ") " (1) "

是一定的是GKX工作。中华的主义是否是在自己的第一人。主义的是中华的是一种的自己的是这种的。

Time: 3 Hours

Maximum Marks: 80

Instructions to Candidates:

- 1. Answer the questions of all three Sections as per the instructions.
- 2. Draw the diagrams wherever necessary.

SECTION - A

1. Answer any 10 of the following.

(10×2=20)

- a) What is multiprogramming?
- b) Mention any two applications real time systems.
- c) Define CPU scheduling.
- d) What is binary semaphore? Mention its use.
- e) What is deadlock?
- f) Differentiate between fragmentation & compaction.
- g) Mention the two instructions used for the implementation of mutual exclusion in critical section.
- h) What is logical address?
- i) What is boot block?
- i) What is the use of an overlay?
- k) List different approaches to authenticate a user.
- What is thrashing?

SECTION - B

Answer any 4 questions.

 $(4 \times 5 = 2)$

- What is critical section problem? Explain.
- Explain access matrix method of system protection.
- Explain various file operations.
- Explain different states of a process with neat diagram.
- Explain swapping process with neat diagram. 6.
- Explain the method of deadlock prevention.

SECTION - C

Answer any 4 of the following.

 $(4 \times 10 = 40)$

Consider the following set of processes with CPU burst time given in milliseconds. 8.

Process	Burst time
P	10 ms
P ₂	1 ms
P ₃	2 ms
P ₄	1 ms
P ₅	5 ms

Processes are arrived in P₁, P₂, P₃, P₄, P₅ order of all at time 0 (zero).

- Draw Gantt charts to show execution using SJF and Round Robin (Quantum time=1ms) Scheduling.
- Calculate average waiting time for SJF and Round Robin Scheduling.
- Calculate average turn around time for SJF and Round Robin Scheduling. (2+4+4)
- Explain optimal page replacement and least recently used (LRU) page replacement 9. algorithms considering the following reference string.

$$(7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1)$$

Explain SCAN & LOOK Disk Scheduling Algorithm with an example. b) (5+5)

10. Consider the following snapshot of the system

	Allocation					
	Α	В	C	D		
P _o	0	0	1	2		
\mathbf{P}_{1}	1	0	0	0		
P_2	1	3	5	4		
P_3	0	6	3	2		
P_{4}	0	0	1	4		

	200		•
	Max	kimun	n ·
A	В	С	D
0	0	1	2
1 .	7	5	0
2	3	5	6
0	6	5	2
0	6	. 5	6

	Ava	ilable	
Α	В	C	D
1	5	2	0

Using the bankers algorithm, answer the following

- i) What is the content of NEED Matrix?
- ii) Is the system in safe state? If yes, give the SAFE state
- iii) If a request from process P₁ arrives for (0 4 2 0), can the request be granted immediately? (2+6+2)
- 11. a) Explain contiguous allocation of disk space with neat diagram.
 - b) Explain paging with an example.

(5+5)

- 12. a) What are real time systems? Explain.
 - b) Explain Dining Philosophers problem of Synchronization.

(5+5)