

22521/E 210

Reg. No.	.•			

V Semester B.C.A.2 Degree Examination, November 2015 OPERATING SYSTEM

(RCU - Regular/Repeaters)

Time: 3 Hours]

[Max. Marks: 80

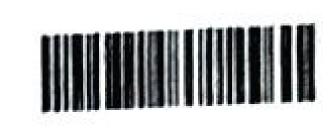
Instruction: Draw the diagrams wherever necessary.

Simple calculators are permitted.

SECTION A

Answer any ten questions:

 $(10 \times 2 = 20)$


- 1. What is a system call? Mention different types of system call.
- 2. Define preemptive and non-preemptive CPU scheduling.
- 3. Define a thread. State the major advantage of thread.
- 4. Give the necessary conditions for deadlock to occur.
- 5. Define context switch.
- 6. What are the disadvantages of contiguous memory allocation?
- 7. What is a page fault?
- 8. What is internal fragmentation?
- 9. List the different file attributes.
- 10. Define the term backup and recovery.
- 11. What is a onetime password?
- 12. Mention different biometric devices for user authentication.

TI

1

P.T.O.

22521/E 210

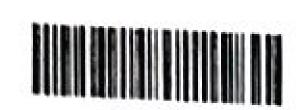
SECTION B

Answer any six questions:

 $(6 \times 5 = 30)$

- 13. Explain function of OS in resource allocation and scheduling.
- 14. What are the components of process control block? Explain.
- 15. Show how to implement mutual exclusion in multiprocessing environment through SetAndTest() instruction.
- 16. Explain dining philosopher's problem of synchronization.
- 17. Explain in detail segmentation with respect to memory management.
- 18. Explain linked list method of free space management.
- 19. Discuss the commonly used operations on file.
- 20. Explain boot blocks with respect to disk management.

SECTION C


Answer any three questions:

 $(3 \times 10 = 30)$

21. Assume the following processes arrive for execution at the time indicated and also the length of CPU-burst time and arrival time is given in milliseconds.

Process	Burst time (ms)	Priority	Arrival time (ms)
P_1	8	4	0
P_2	9	1	0
P_3	4	2	1
P ₄	3	3	2

- (a) Give a Gantt chart illustrating the execution of these processes using SJF (preemptive) and priority (non preemptive), lower number indicates high priority.
- (b) Calculate the average waiting time for each of the above scheduling algorithm. (6)

22. Consider the following system snapshot using data structures in the Banker's algorithm, with resources A, B, C and D and processes P_0 to P_4 .

	Allocation					Max					Available				
,	A	В	C	D		\boldsymbol{A}	В	C	D		A	В	C	D	
P_0	4	0	0	1	P_0	6	0	1	2	•	3	2	1	1	
P_1	1	1	0	0	P_1	1	7	5	0						
P_2	1	2	5	4	P_2	2	3	5	6						
P_3	0	6	3	3	P_3	1	6	5	3						
P_4	0	2	1	2	P_4	1	6	5	6			8			

Using Banker's algorithm, answer the following questions:

- (a) How many resources of type A, B, C and D are there? (2)
- (b) What are the contents of need matrix? (2)
- (c) Is the system in a safe state? Why?
- (d) If a request from process P_4 arrives for additional resources of (1, 2, 0, 0), can the request be granted immediately? (3)
- 23. Consider the following page reference string:

Calculate the number of page fault that will occur for the following page replacement algorithm, assuming 3 frames.

Initially all the frames are empty.

- (a) LRU replacement. (5)
- (b) Optimal replacement. (5)
- 24. (a) What is Consistency semantics? (5)
 - (b) Briefly explain the layered structure of file system. (5)
- 25. (a) Define authentication. (2)
 - (b) A hard disk having 100 cylinders, numbered from 0 to 99. The drive is currently serving the request at cylinder 43. The status of the queue is as follows: 68, 90, 47, 15, 67, 58, 56, 50, 10, 75, 99. What is the total number of head movements to satisfy all the pending requests for each of the following disk-scheduling algorithms?
 - (i) FCFS (4)
 - (ii) SSTF (4)