Reg. No. \square

I Semester BCA 4 Degree Examination, Nov./Dec. - 2019 MATHEMATICS-I
(Regular)
Paper - (BCA 4)

Answer ALL of the following questions:

1. a) Express $\frac{2-5 i}{2+5 i}$ in the form $x+i y$.
b) Simplify $\frac{[\cos A+i \operatorname{Sin} A]^{5}}{[\cos 2 A-i \operatorname{Sin} 2 A]^{-3}}$
c) If the fourth term of A.P. is 15 and whose common difference is -2 . Find the $8^{\text {th }}$ term of A.P.
d) Find the Tenth term of the G.P. 5, 25, 125, \qquad
e) If α and β are the roots of equation $2 x^{2}+4 x-5=0$ find the value of $\alpha+\beta$ and $\alpha \beta$.
f) State Binomial Theorem.
g) P.T.Tan $A+\operatorname{Cot} A=\operatorname{Sec} A \operatorname{Cosec} A$
h) If $\overrightarrow{\mathrm{a}}=2 i-3 j-k$ and $\overrightarrow{\mathrm{b}}=6 i-j+2 k$
i) Find the distance of the point $(3,-4)$ from the origin.
j) Find the equation of straight line given its intercept on axes $(3,4)$.

SECTION - B

Answer any FOUR Questions:
2. Find the conjugate of the complex number and express it in the form $a+i b \frac{2-i}{2+i}+\frac{1+3 i}{1-3 i}$
3. The Third term of G.P. is 12 and the sixth term is 96 . Find the sum of 9 terms.
4. Find the $8^{\text {th }}$ Term in the expansion of $\left(2 x^{2}-\frac{3}{x}\right)^{12}$.
P.T.O.
5. Find the area of the parallelogram whose adjacent sides are $\vec{a}=2 i+3 j-5 k$ and $\vec{b}=i+2 j+k$.
6. Find the equation of the straight line which passes through $(3,-4)$ and $(-2,5)$.

SECTION - C

Answer any FOUR Questions:
$(4 \times 10=40)$
7. a) Simplify: $\frac{(\cos 3 \theta+i \operatorname{Sin} 3 \theta)^{5}(\cos 2 \theta-i \operatorname{Sin} 2 \theta)^{3}}{(\cos 4 \theta+i \operatorname{Sin} 4 \theta)^{2}(\cos 5 \theta-i \operatorname{Sin} 5 \theta)^{4}}$
b) Express the complex numbers in the polar form and hence find their modules and amplitude $z=1+i$.
(5+5=10)
8. a) In a A.P. the seventh term is 20 and the Thirteenth term is 38 . Find the Fourteenth term.
b) Find the sum of 5+55+555+----to n terms.
($5+5=10$)
9. a) Find the middle term in the expansion of $\left(\frac{x}{a}-\frac{a}{x}\right)^{14}$.
b) If α and β are the roots of $3 x^{2}-2 x+1=0$ find the value of $\frac{1}{\alpha}+\frac{1}{\beta}$.
$(5+5=10)$
10. a) Prove that $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sec \theta-\tan \theta$.
b) In any Triangle ABC , prove that $2[b c \operatorname{Cos} A+c a \operatorname{Cos} B+a b \operatorname{Cos} c]=a^{2}+b^{2}+c^{2}$.
11. a) Show that the points $A(2,-4) B(4,-2)$ and $C(7,1)$ are collinear.
b) Find the co-ordinates of the point which divides
i. Internally
ii. Externally the line joining the points $(2,3)$ and $(4,5)$ in the ratio 1:2.

