

I Semester BCA 4 Degree Examination, Nov./Dec. - 2019 MATHEMATICS-I

(Regular)

Paper - (BCA 4)

Time: 3 Hours SECTION - A Maximum Marks: 80

Answer **ALL** of the following questions:

 $(10 \times 2 = 20)$

- 1. a) Express $\frac{2-5i}{2+5i}$ in the form x+iy.
 - b) Simplify $\frac{\left[\cos A + iSinA\right]^{5}}{\left[\cos 2A iSin2A\right]^{-3}}$
 - c) If the fourth term of A.P. is 15 and whose common difference is -2. Find the 8th term of A.P.
 - d) Find the Tenth term of the G.P. 5, 25, 125,.....
 - e) If α and β are the roots of equation $2x^2 + 4x 5 = 0$ find the value of $\alpha + \beta$ and $\alpha\beta$.
 - f) State Binomial Theorem.
 - g) P.T.TanA + CotA = SecACosecA
 - h) If $\vec{a} = 2i 3j k$ and $\vec{b} = 6i j + 2k$
 - i) Find the distance of the point (3,-4) from the origin.
 - j) Find the equation of straight line given its intercept on axes (3,4).

SECTION - B

Answer any **FOUR** Questions:

 $(4 \times 5 = 20)$

- 2. Find the conjugate of the complex number and express it in the form $a+ib \frac{2-i}{2+i} + \frac{1+3i}{1-3i}$
- 3. The Third term of G.P. is 12 and the sixth term is 96. Find the sum of 9 terms.
- **4.** Find the 8th Term in the expansion of $\left(2x^2 \frac{3}{x}\right)^{12}$.

- 5. Find the area of the parallelogram whose adjacent sides are $\vec{a} = 2i + 3j 5k$ and $\vec{b} = i + 2j + k$.
- **6.** Find the equation of the straight line which passes through (3,-4) and (-2,5).

SECTION - C

Answer any **FOUR** Questions:

 $(4 \times 10 = 40)$

- 7. a) Simplify: $\frac{(\cos 3\theta + iSin3\theta)^5(\cos 2\theta iSin2\theta)^3}{(\cos 4\theta + iSin4\theta)^2(\cos 5\theta iSin5\theta)^4}$
 - b) Express the complex numbers in the polar form and hence find their modules and amplitude z = 1 + i. (5+5=10)
- **8.** a) In a A.P. the seventh term is 20 and the Thirteenth term is 38. Find the Fourteenth term.
 - b) Find the sum of $5+55+555+\cdots$ to n terms.

(5+5=10)

- **9.** a) Find the middle term in the expansion of $\left(\frac{x}{a} \frac{a}{x}\right)^{14}$.
 - b) If α and β are the roots of $3x^2 2x + 1 = 0$ find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$. (5+5=10)
- **10.** a) Prove that $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta \tan\theta$.
 - b) In any Triangle ABC, prove that $2[bcCosA + caCosB + abCosc] = a^2 + b^2 + c^2$. (5+5=10)
- 11. a) Show that the points A(2,-4) B(4,-2) and C(7,1) are collinear.
 - b) Find the co-ordinates of the point which divides
 - i. Internally
 - ii. Externally the line joining the points (2,3) and (4,5) in the ratio 1:2. (5+5=10)