Reg. No.

I Semester B.C.A. 4 Degree Examination, Nov./Dec. 2018 MATHEMATICS - I (Regular/Repeater)

Time : 3 Hours
Max. Marks :80
Instructions : a) Answer all Sections as per instructions.
b) Use of simple calculator is allowed.

SECTION - A
I. Answer all questions.
$(10 \times 2=20)$

1) a) Express $\frac{3+4 i}{3-4 i}$ in the form $x+i y$.
b) Simplify $\frac{(\cos \theta+i \sin \theta)^{10}}{(\cos 2 \theta-i \sin 2 \theta)^{-4}}$
c) Find $20^{\text {th }}$ term of the sequence $5,8,11, \ldots$.
d) If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G. P. then find G. M. between a and c .
e) Expand using Binomial Theorem $(a+b)^{3}$.
f) The angle of elevation of the top of tower at a distance of 100 metres is 30°, find its height.
g) Find the unit vector in the direction of the vector $\vec{a}=i+j+k$.
h) Find the projection of \vec{a} on \vec{b} if $\vec{a}=2 i+3 j+5 k$ and $\vec{b}=2 i-j+2 k$.
i) Find the co-ordinates of the midpoint of the line joining the points $(4,7)$ and $(6,9)$.
j) Find the co-ordinate of the point which divides internally the line joining points $(1,3)$ and $(2,7)$ in the ratio $3: 4$.
SECTION - B
II. Answer any four questions.
$(4 \times 5=20)$
2) Find the conjugate of the complex number and express it in the form

$$
x+i y \cdot Z=\frac{2-i}{2+i}+\frac{1+3 i}{1-3 i}
$$

3) Find the sum of $7+77+777+.$. to ' n ' terms.
4) Find the $7^{\text {th }}$ term in expansion of $\left(3 x^{2}-\frac{y}{3}\right)^{9}$
5) In any Triangle $A B C$ prove that $a(\sin B-\sin C)+b(\sin C-\sin A)+c(\sin A-\sin B)=0$.
6) Show that the points $(2,-3),(-6,5)$ and $(-8,7)$ are collinear.
SECTION - C
III. Answer any four of the following.
7) a) Simplify $=\frac{[\operatorname{Cos} 3 \theta+i \sin 3 \theta]^{5} \cdot[\operatorname{Cos} 2 \theta-i \sin 2 \theta]^{3}}{[\operatorname{Cos} 4 \theta+i \sin 4 \theta]^{2} \cdot[\operatorname{Cos} 5 \theta-i \sin 5 \theta]^{4}}$
b) Express $\left(\frac{2+\mathrm{i}}{3+\mathrm{i}}\right)^{2}$ in the form $\mathrm{x}+\mathrm{iy}$.
P.T.O.
8) a) Find the Three Numbers in A. P. whose sum of three Numbers is 21 and their product is 280 .
b) Insert five geometric means between 3 and 192.
9) a) Find the middle term in the expansion of $\left(x+\frac{2}{x}\right)^{8}$
b) If α and β are the roots of the equation $3 x^{2}+5 x+1=0$ then find the values of $\frac{1}{\alpha}+\frac{1}{\beta}$.
10) a) Find the cosine of the angle between the pairs of vectors $\vec{a}=i+j+k$ and $\vec{b}=2 i+3 j-4 k$.
b) Find the area of parallelogram whose adjacent sides are $3 i+2 j+k$ and $5 i+3 j-4 k$.
11) a) Find the equation of the straight line passing through $(-1,5)$ and having slope $\frac{2}{7}$. b) Find the point of intersection of the lines $2 x+3 y+7=0$ and $3 x-5 y+1=0$.
