H		ŀ	

-			Bl	J 4 U.	210	Ì
Reg. No.	A					-

II Semester B.C.A.6. (NEP) Degree Examination, September/October - 2022 DATA STRUCTURE USING C

Paper - I (Regular)

Time: 2 Hours Maximum Marks: 60

Instructions to Candidates: Answer the question as per the instructions given.

1. Answer any Six questions of the following.

 $(6 \times 2 = 12)$

- a. What is Dynamic memory allocation?
- b. What is pointers in 'C'? Give syntax and example.
- c. What is towers of Hanoi? Mention constraints.
- d. Define sequential search? List its advantages.
- e. Convert infix to postfix notation.
 - a. A*B+C.
 - b. (A+B)*C-D.
- f. What is priority queue mention different types of it.
- g. What is singly linked list? How do you declare it?
- h. What is strictly binary tree? Give example.
- 2. Answer any Three questions of the following.

 $(3 \times 4 = 12)$

- a. What is data structure? Define primitive and non primitive data structures.
- b. Write a short note on
 - i. Malloc
 - ii. Calloc
 - iii. Realloc.
- c. Write advantages and disadvantages of using pointers.
- d. With example write a simple program in 'C' to access address and value of variables using pointers.

P.T.O.

3. Answer any Three questions of the following.

 $(3\times 4=12)$

- a. What is recursion? Write comparison between iterative and recursive function.
- b. Write a 'C' program to generate binomial coefficient using recursive function.
- c. Write an algorithm deleting elements of arrays.
- d. Compare quick sort and selection sort.
- 4. Answer any **Three** questions of the following.

 $(3 \times 4 = 12)$

- a. Explain Application of stack in function calls.
- b. Explain working of circular queue.
- c. Write an algorithm evaluation of postfix expressions using stack.
- d. What is queue? Write basic concepts.
- 5. Answer any **Three** questions of the following.

 $(3\times 4=12)$

- a. Explain the types of linked lists.
- b. Define
 - i. Node
 - ii. Terminal node.
 - iii. Non-terminal node.
- c. Write an algorithm to display in order traversal of a binary tree.
- d. Define:
 - i. Heap tree.
 - ii. Binary search tree.
 - iii. Complete binary tree.