Reg. No.				

III Semester B.C.A.2 Degree Examination, November 2015 (Repeaters)

DISCRETE MATHEMATICAL STRUCTURES

Time: 3 Hours [Max. Marks: 80

Instruction: Scientific Calculators are allowed.

PART A

I. Answer **any ten** questions :

 $(10 \times 2 = 20)$

- 1. If $A = \{a, b, c, d\}$, $B = \{d, e, f, g\}$, then compute (a) A B (b) B A.
- 2. Define combination with example.
- 3. Write the recursive formula for the sequence 5, 10, 20, 40, 80, 160.
- 4. Construct the truth table for $q \rightarrow p \lor q$).
- 5. Define existential quantifier.
- 6. State well ordering principle.
- 7. Find the GCD of 108 and 288.
- 8. Define equivalence relation.
- 9. List all partitions of $A = \{a, b\}$.
- 10. If $A = \{a, b, c\}$, $B + \{c, d, e, f\}$, then find $A \times B$.
- 11. Let $A = \{2, 3, 4, 5\}$ and R be a relation on A defined by aRb if and only if a = b.
- 12. Consider the functions f and g defined by $f(x) = x^3$ and $g(x) = x^2 + 1 \ \forall \ x \in R$. Find $f \circ g$.

1 **P.T.O.**

22323/C 230

PART B

II. Answer any **six** questions:

 $(6 \times 5 = 30)$

- 13. A certain question paper contains two parts *A* and *B* each containing 4 questions. How many different ways a student can answer 5 questions by selecting atleast 2 questions from each part?
- 14. With usual notations prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$.
- 15. State any five laws of logic.
- 16. Give direct proof of the statement "Sum of two odd integers is even".
- 17. Prove by the method of mathematical induction that $1^2+2^2+3^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}\ \forall\ n\in\mathbb{N}\ .$
- 18. Find the GCD of 275 and 726 and express it as 275x + 726y.
- 19. Let A = [a, b, c, d, e] and $R = \{(a, a), (a, b), (b, c), (c, d), (c, e), (d, e)\}$ compute (a) R^2 (b) R^{∞} .
- 20. If R is a relation on $A = \{a_1, a_2 \dots a_n\}$ then prove that $M_{R^2} = M_R \odot M_R$.

PART C

III. Answer any **three** full questions:

- $(3 \times 10 = 30)$
- 21. (a) A fair die is thrown twice. Find the probability that
 - (i) an even number occurs in atleast one throw.
 - (ii) even numbers occur on both throws.
 - (b) For any three sets prove that $A \cup (B \cup C) = (A \cup B) \cup C$.

(5 + 5 = 10)

- 22. (a) State any five rules of inference along with their names.
 - (b) Test the validity of the argument:

$$p \to r$$

$$\neg p \to q$$

$$q \to s$$

$$\neg r \to s$$

(5 + 5 = 10)

23. State and prove the fundamental theorem of arithmetic.

(10)

- 24. (a) Prove that congruence mod 2 is an equivalence relation.
 - (b) Let $A = \{1, 2, 3, 4\}$ and $B = \{a, b, c\}$. Let $R = \{(1, a), (1, b), (2, b), (2, c), (3, b), (4, a)\}$ compute (i) \overline{R} (ii) R^{-1} .

(5 + 5 = 10)

- 25. (a) If $f: A \to B$ is a bijection prove that $f^{-1}: B \to A$ is also bijection.
 - (b) Let $f: A \to B$ and $g: B \to C$ are invertible functions then prove that $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

(5 + 5 = 10)