III Semester BCA 3 (U.G) Degree Examination, Nov./Dec. - 2019 DMS DISCRETE MATHEMATICAL STRUCTURES

(Repeater)

Paper: Theory (BCA 3)

Time: 3 Hours Maximum Marks: 80

Instructions to Candidates:

- 1. Scientific calculators are not allowed.
- 2. Simple calculators are allowed.

PART-A

Answer any 10 questions:

 $(10 \times 2 = 20)$

- 1. a) If $A = \{a, b, c, d\}$ and $B = \{a, c, e, f, g\}$ then compute
 - i. A-B
- ii. $A\Delta B$ or $A \oplus B$
- b) State pigeonhole principle.
- c) Define negation with truth table.
- d) Find the truth value $q \rightarrow (p \lor q)$ given that p is true and q is false.
- e) Define well ordered principle.
- f) Write recursive formula for the sequence 3, 7, 11, 15, 19
- g) Find the G.C.D. of 540 and 504.
- h) List all the partitions of $A = \{1, 2, 3\}$.
- i) Define equivalence relation.
- j) Define permutation.
- k) Let function $f: R \to R$ defined by $f(x) = 2x^2 + x + 1$, determine images of the subset $A_1 = \{-1, 2\}$ of R.
- 1) Consider the function f and g, defined by $f(x) = x^3$ and $g(x) = x^2 + 1$ find gof.

PART - B

Answer any 4 questions of the following:

 $(4 \times 5 = 20)$

2. Explain any four set operations with Venn diagram.

P.T.O.

- 3. Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ compute:
 - i. $A \vee B$
- ii. $A \wedge B$
- **4.** Construct truth table of $(p \lor \sim q) \rightarrow \sim r$
- 5. Prove by method of mathematical induction $1+2+3+\cdots+n=n(n+1)/2$.
- **6.** Find the GCD of 495 and 675. Express it in the form 495a + 675b.
- 7. Let $A = \{a, b, c, d, e\}$ and $R = \{(a, a), (a, c), (a, d), (b, b), (c, d), (d, d)\}$ compute
 - i. \overline{R}

ii. R^c

PART - C

Answer any 4 questions of the following:

 $(4 \times 10 = 40)$

- 8. a) If one integer is selected at random from integers 1 to 15, if A is the event that a number selected is even and B is the event that a number selected is divisible by 3. Find $P(A \lor B)$.
 - b) Find the number of permutations of the letters of the word "ENGINEERING". In how many arrangements the 3E's are together? (5,2+3)
- **9.** State any Five rules of inference along with their names.

(10)

10. State and prove the fundamental theorem of Arithmetic.

(10)

11. Explain the properties of Relations.

(10)

- 12. a) Let $A = \{1,2,3\}$ and $P_1 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$, $P_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$, $P_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ compute
 - i. P_1
- P_1^{-1} ii. $P_3 o P_2$
 - b) Let $f(n) = 3n^3 2n^2$ and $g(n) = 2n^4$ be defined for positive integers n. Then show that f and g have the same order. (5+5)